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ABSTRACT: The novel A2B2O7-type compound Pb2Co2O7 was synthesized at 8
GPa and 1673 K. Synchrotron X-ray diffraction shows a cubic pyrochlore
structure with space group Fd3 ̅m. Rietveld structural analysis reveals a large cation
mixed occupancy at both A and B sites by about 40%, the greatest value found in
the pyrochlore family. In combination with the X-ray absorption spectroscopy
results, the specific chemical composition and charge states are determined to be
(Co0.6Pb0.4)

3+
2(Pb0.6Co0.4)

4+
2O7, in which both the A-site Co3+ and the B-site

Co4+ are low-spin. Due to the tetrahedral geometric frustration effects as well as
the random Co4+ and Pb4+ distribution at the B site, spin glassy behavior is well
observed following the conventional critical slowing down feature in Pb2Co2O7.

I. INTRODUCTION

Pyrochlore oxides with chemical formula A2B2O7 (or
A2B2O6O′) have been attracting much attention due to their
fascinating chemical and physical properties such as super-
conductivity observed in Cd2Re2O7, giant magnetoresistance in
Tl2Mn2O7, unconventional anomalous Hall effect in metallic
Nd2Mo2O7, Kondo-like effect in Pr2Ir2O7, etc.

1−4 Pyrochlore
often crystallizes in a face-centered cubic structure with space
group Fd3̅m (No. 227). As shown in Figure 1a, the A-site
cation in the pyrochlore with larger ionic size occupies the
special atomic position 16d (1/2, 1/2, 1/2), which is
coordinated by eight oxygens (6 O and 2 O′), while the
smaller B-site cation is located at the special site 16c (0, 0, 0)
with 6-fold oxygen coordination, forming distorted BO6

octahedra. The two distinct oxygen positions are at 48f (x, 1/
8, 1/8) for O and 8b (3/8, 3/8, 3/8) for O′. Moreover, when
one considers the polyhedra composed of the nearest
neighboring A-site or B-site cation, both O′A4 and OB4

tetrahedra with geometric frustration can form. As a
consequence, nontrivial spin properties such as spin liquid
and spin ice may occur in pyrochlore oxides.5

In past decades, the cobalt oxides have been investigated
intensely due to their versatile functional properties. For
example, high ferromagnetic Curie temperature is found in

SrCoO3 single crystals.6,7 On the other hand, the oxygen-
deficient SrCoO3‑δ shows reversible redox reactions, making it
promising for developing highly sensitive electrochemical
sensors.8 The layered LiCoO2 and the double perovskite
(Nd,Ba,Ca)2Co2O5+δ have been studied widely in solid oxide
fuel cells.9,10 In addition, a giant magnetoresistance effect is
observed in LnBaCo2O5+δ (Ln = Eu, Gd)11 and collinear-
magnetism-driven ferroelectricity is found in Ca3CoMnO6.

12,13

In parallel to the study of Co-based oxides, the Pb-based oxides
have also attracted much attention owing to their functional
properties such as piezoelectricity, ferroelectricity, and multi-
ferroicity.14−16 Unfortunately, however, as far as the Pb−Co−O
ternary system is concerned, the number of compounds is
extremely limited. It appears that the recently discovered
perovskite PbCoO3 (Pb2+Pb4+3Co

2+
2Co

3+
2O12) with both A-

and B-site charge orderings is the only known example of this
ternary system to date.17 In this paper, we report the new
finding of the Co-based pyrochlore Pb2Co2O7, which can only
be stabilized under high-pressure and -temperature conditions
probably due to the large cation mixed occupancy at both A
and B sites.
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II. EXPERIMENTAL DETAILS
Polycrystalline Pb2Co2O7 was prepared under high-pressure and high-
temperature conditions using a cubic-anvil-type high-pressure
apparatus. Highly pure (>99.9%) PbO2 and CoO powders with a
1:1 mole ratio were used as starting materials. In addition, excess
KClO4 was used as an oxidizing agent. These reactants were
thoroughly mixed in an agate mortar within an argon-filled glovebox
and then sealed into a platinum capsule 2.8 mm in diameter and 4.0
mm in length. The capsule was treated at 8 GPa and 1673 K for 1/2 h.
When the heat treatment was finished, the sample was quenched to
room temperature, and the pressure was gradually released. The
residual KCl in the final product was washed out by deionized water.
Synchrotron X-ray diffraction (SXRD) on powder samples was

carried out using a large Debye−Scherrer camera on beamline BL02B2
in SPring-8 with the wavelength λ = 0.4199 Å. The SXRD data were
analyzed using the Rietveld refinement program FullProf.18 The soft
X-ray absorption spectroscopy (XAS) at the Co L2,3 edges was
measured with total electron yield at the BL08B beamline of the
National Synchrotron Radiation Research Center (NSRRC) in
Taiwan. The hard XAS at the Pb L3 edges was measured in the
transmission geometry at the BL07A beamline of the NSRRC. The
temperature-dependent dc magnetic susceptibility (χdc) and field-
dependent isothermal magnetization (M) were measured on a
commercial superconducting quantum interference device magneto-
meter (Quantum Design). The magnetic susceptibility data were
collected between 2 and 400 K at different magnetic fields with a
temperature sweep model at a rate of 3 K/min. The temperature
dependence of ac magnetization (M′), resistivity, and specific heat

were measured by using a Quantum Design physical property
measurement system.

III. RESULTS AND DISCUSSION
Figure 1b shows the SXRD pattern of Pb2Co2O7 measured at
room temperature. All of the diffraction peaks can be well
indexed on the basis of an A2B2O7-type pyrochlore structure
model with space group Fd3 ̅m. Since the high-resolution
synchrotron X-ray is sensitive enough to distinguish the heavy
atoms Pb and Co, the distribution for these two cations was
examined by refining the occupancy parameter. When the Pb/
Co atoms were constrained to fully occupy the A/B sites or B/
A sites, a much higher agreement factor Rp (>30%) was always
obtained. In contrast, however, if we refined the occupancy
parameter for these two sites by allowing Pb and Co to freely
occupy the A or B site, the Rp factor was sharply reduced to a
satisfied value of less than 5%. The good agreement between
the measurement data and the Rietveld refinement is shown in
Figure 1b by considering the Pb/Co free occupancy but
constraining the total occupancy factor to be unity for either
the A or B site. Note that during the refinement the occupancy
factor of oxygen is fixed to unity since the XAS results illustrate
the almost stoichiometric oxygen content (discussed later).
Table 1 gives the related refined structural parameters. A

considerable Pb−Co mixed occupancy is found to occur, i.e.
the A site is occupied by about 60% Co and 40% Pb and vice
versa for the B site, indicating the detailed chemical
composition to be (Co0.6Pb0.4)2(Pb0.6Co0.4)2O7. Although the
mixed occupancy effect is also observed in other pyrochlores,
the mixed occupancy degree is usually less than 25%.19 The
current Pb2Co2O7 thus exhibits the greatest mixed occupancy
in the pyrochlore family discovered so far. As shown later, the
charge states of Pb and Co at different atomic sites are different
to ensure that the A-site average ionic radius is larger than that
of the B-site. This distinct charge distribution can effectively
prevent the random A−B antisite disorder of cations. In any
event, Pb2Co2O7 provides the first Co-based oxide possessing a
cubic pyrochlore structure.
It is well-known that the multiplet spectral features in the

XAS data at the 3d transition-metal L2,3 edges are very sensitive
to the valence and spin states as well as the local
environment.20,21 To identify the charge and spin states of
Co, we performed the Co L2,3 XAS measurements. Figure 2a
shows the Co L2,3 XAS of Pb2Co2O7 together with that of
EuCoO3 and BaCoO3 used as low-spin Co3+ and Co4+

references with CoO6 octahedral coordination, respectively.20

As shown in Figure 2a, Pb2Co2O7 has an XAS profile similar to
those of these two references, suggesting the presence of low-

Figure 1. (a) Crystal structure of pyrochlore oxide A2B2O6O′ with
space group Fd3̅m. (b) SXRD pattern collected at room temperature
and Rietveld refinement results for Pb2Co2O7. Observed (red circle),
calculated (black line), and difference (blue line) profiles are shown
together with the allowed Bragg reflections (ticks). The asterisk
denotes a small amount of an unknown impurity phase (<2%).

Table 1. | Crystallographic Parameters of Pb2Co2O7 Refined
from SXRD Pattern at Room Temperaturea

atom site g x y z Uiso (Å
2)

Co1 16d 0.61(7) 0.5 0.5 0.5 0.387(5)
Pb1 16d 0.39(4) 0.5 0.5 0.5 0.387(5)
Pb2 16c 0.61(7) 0 0 0 0.145(3)
Co2 16c 0.39(4) 0 0 0 0.145(3)
O1 48f 1 0.3219(2) 0.125 0.125 0.456(3)
O2 8b 1 0.375 0.375 0.375 0.515(2)

aCrystal data: space group Fd3 ̅m (No. 227), Z = 8, a = 9.95776(2) Å,
ρcalc = 5.0907(1) g/cm3, V = 987.30(1) Å3, Rwp = 8.9%, Rp = 4.7%. g
denotes the occupancy factor.
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spin Co ionic states in Pb2Co2O7. Note that the XAS spectral
feature of Pb2Co2O7 is also similar to that observed in the Co3+

and Co4+ mixed system NaxCoO2, in which low-spin Co ions
emerge as well.20,21 In addition, we find that the absorption
spectrum of Pb2Co2O7 displays an apparent energy shift relative
to the references. For example, the L3 edge peak position is
located at 780.2 eV for EuCo3+O3, 780.6 eV for Pb2Co2O7, and
781.2 eV for BaCo4+O3. By comparison, the valence state of Co
ions in Pb2Co2O7 is determined to be +3.4 on average,
suggesting Co3+:Co4+ = 3:2 (i.e., Co3+1.2Co

4+
0.8 in each formula

unit). For the hard XAS of the heavier element Pb, the chemical
shift of the Pb L3 edge defined at μ ≈ 0.7−0.8 of the
normalized intensity can be used to determine the valence
state.22,23 In Figure 2b one can see that the Pb L3 edge shifts to
higher energy from the Pb2+ reference PbO to the current
Pb2Co2O7 and then to the Pb4+ reference PbO2. According to
the systematic energy shift of the absorption edge, we estimate
a Pb3.6+ average valence state in Pb2Co2O7. When the structural
refinement and XAS results are combined, the detailed
chemical and charge formula of Pb2Co2O7 can be assigned to
be (Co0.6Pb0.4)2

3+(Pb0.6Co0.4)2
4+O7, where Co3+ and the

average Pb3+ occupy the pyrochlore A site with a mole ratio
of 3:2, whereas Pb4+ and Co4+ occupy the B site with an
identical ratio. This formula is also in accordance with the
charge balance requirement for the stoichiometric oxygen
content. Note that Pb is a valence skipper element;17 therefore,
the average Pb3+ state occurring at the A site should be
composed of Pb2+0.5Pb

4+
0.5 in reality.

As mentioned above, although there exists a large Pb−Co
mixed occupancy at both A and B sites, the A−B intersite
disorder can be reduced significantly by the distinct charge
states and ionic sizes of these two cations at different atomic
sites. Moreover, both the A-site Co3+ and the B-site Co4+ are
low-spin in nature. This means that the Co3+ is nonmagnetic
and insulating. As a consequence, the magnetism and electrical
transport will be dominated by the corner-sharing BO6
octahedra in the current Pb2Co2O7. Figure 3 presents the

resistivity of Pb2Co2O7 as a function of temperature. Since Pb4+

with a closed cell electronic configuration governs the B site,
the compound exhibits electrical insulating behavior in the
whole temperature region we measured, as featured by the
increasing resistivity on cooling. Moreover, above 250 K, the
temperature dependence of resistivity can be fitted on the basis
of a 3D Mott variable range hopping model with the formula
ρ(T) = ρ0 exp(T0/T)

1/4, as shown in the inset of Figure 3,
further revealing the insulating nature of Pb2Co2O7 as expected
from structural and charge state analysis.
The magnetism of Pb2Co2O7 was studied by both dc and ac

magnetization. As shown in Figure 4a, the dc zero-field-cooling
(ZFC) and field-cooling (FC) magnetic susceptibility curves
remarkably separate from each other at the critical temperature
Tf ≈ 20 K at 0.1 T. Moreover, with increasing magnetic field, Tf
systematically shifts toward lower temperature, accompanied by
the gradual reduction and broadening of the ZFC magnetic
susceptibility cusp around Tf. Below Tf, the compound shows
magnetic hysteresis but nonsaturated magnetization behavior
(inset of Figure 4a). When the specific heat is measured, we do
not find a visible anomaly near Tf (see the inset of Figure 4b).
These features strongly suggest the occurrence of spin glassy
behavior. The inverse magnetic susceptibility above 200 K can
be well fitted on the basis of the Curie−Weiss law (see Figure
4b), producing the Weiss temperature Θ = −170.0 K, which is
much higher than the value of Tf. One therefore can calculate
the frustration index to be f = |Θ|/Tf = 8.5, indicating strong
magnetic frustration. These results are in good agreement with
the tetrahedral geometric frustration effects in a pyrochlore
structure arising from the magnetic Co4+ ions. In addition, since
Co4+ occupies only 40% of the B sites, the Co−Co magnetic
interaction probably is competing between antiferromagnetism
and ferromagnetism, which can also contribute to the spin
glassy behavior.

Figure 2. XAS of (a) Co L2,3 edges and (b) Pb L3 edge of Pb2Co2O7.
The XAS spectra of some related references are also shown for
comparison.

Figure 3. Temperature dependence of resistivity of Pb2Co2O7. The
inset shows the fitting result by the 3D Mott variable range hopping
model between 250 and 300 K.
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To further confirm the spin glassy nature of Pb2Co2O7, ac
magnetization was measured at different frequencies, as shown
in Figure 4c. Obviously, the spin freezing temperature Tf
increases with increasing frequency. This can be regarded as
convincing evidence for the presence of spin glass because with
increasing frequency the spin directions are less able to follow
the oscillating field and therefore spin freezing occurs. Usually,
the frequency dependence of Tf in spin glass can be described
by the conventional critical slowing down behavior with the

function τf = τ0(Tf/Tg − 1)−zv. Here τf = 1/f corresponds to the
maximum relaxation time of the system at temperature Tf, τ0 is
the intrinsic relaxation time of the spin dynamics, Tg is the
freezing temperature at f = 0, and zv is the dynamic exponent.
Figure 4c shows the good fit of Pb2Co2O7 using this function,
yielding τ0 = [2.26(3)] × 10−7 s and zv = 15.19(2). Both values
are comparable with the results found in other pyrochlore spin
glassy systems,5 further confirming the glassy magnetic behavior
of Pb2Co2O7 pyrochlore.

IV. CONCLUSIONS
The new oxide Pb2Co2O7 has been prepared for the first time
by using a high-pressure and high-temperature method.
Synchrotron X-ray diffraction confirms that this compound is
the first cobalt-based pyrochlore with space group Fd3 ̅m.
Rietveld structural analysis demonstrates a large mixed cation
occupancy at both the A and B sites by about 40%. On the basis
of the X-ray absorption spectroscopy results, the specific
chemical composition and charge states can be assigned to be
(Co0.6Pb0.4)2

3+(Pb0.6Co0.4)2
4+O7, where low-spin Co3+ and

average Pb3+ occupy the A site and Pb4+ and low-spin Co4+

occupies the B site with a 3:2 mol ratio. Since the distinct
charge states of Pb and Co at different atomic sites have
different ionic sizes, the A−B antisite disorder can be
suppressed significantly. As a result, Pb2Co2O7 exhibits
electrical insulating behavior which follows the 3D Mott
variable range hopping mechanism. In magnetism, the strong
geometric frustration effects and the partial occupancy of
magnetic Co4+ ions at the B site make the compound spin
glassy, well in agreement with the conventional critical slowing
down behavior.
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