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Strongly correlated superconductivity in  
a copper-based metal-organic framework with a  
perfect kagome lattice
T. Takenaka1*, K. Ishihara1*, M. Roppongi1, Y. Miao1, Y. Mizukami1, T. Makita1, J. Tsurumi1, 
S. Watanabe1, J. Takeya1, M. Yamashita2, K. Torizuka2,3, Y. Uwatoko2, T. Sasaki4, X. Huang5, 
W. Xu5, D. Zhu5, N. Su6, J.-G. Cheng6, T. Shibauchi1†, K. Hashimoto1†

Metal-organic frameworks (MOFs), which are self-assemblies of metal ions and organic ligands, provide a tunable 
platform to search a new state of matter. A two-dimensional (2D) perfect kagome lattice, whose geometrical frus-
tration is a key to realizing quantum spin liquids, has been formed in the  − d conjugated 2D MOF [Cu3(C6S6)]n 
(Cu-BHT). The recent discovery of its superconductivity with a critical temperature Tc of 0.25 kelvin raises funda-
mental questions about the nature of electron pairing. Here, we show that Cu-BHT is a strongly correlated uncon-
ventional superconductor with extremely low superfluid density. A nonexponential temperature dependence of 
superfluid density is observed, indicating the possible presence of superconducting gap nodes. The magnitude of 
superfluid density is much smaller than those in conventional superconductors and follows the Uemura’s relation 
of strongly correlated superconductors. These results imply that the unconventional superconductivity in Cu-BHT 
originates from electron correlations related to spin fluctuations of kagome lattice.

INTRODUCTION
Metal-organic frameworks (MOFs), a subclass of coordination poly-
mers with a nanoporous structure consisting of metal ions bridged 
by organic ligands (1), are usually insulating because of the low degree 
of covalency of the metal-ligand bond. Recent substantial progress 
in the development of electrically conductive MOFs (2–5) may open 
up possibilities of applications in energy storage and chemical sensing, 
such as batteries (6), thermoelectric devices (7), and chemiresistive 
sensors (8). However, most conductive MOFs are semiconducting, 
and thus, the realization of delocalization of electrons, that is, band 
transport in MOFs is highly challenging.

A promising route toward metallic MOFs is the through-bond 
approach, which can be achieved by improving the covalency of the 
metal-ligand bond (3). Under this strategy, highly conductive MOFs 
have been synthesized in two-dimensional (2D) layered frameworks 
(9–12) composed of transition metal ions, such as Ni2+ and Cu2+, 
and multidentate organic ligands, such as benzenehexathiol (BHT), 
where the strong overlap of the d orbitals of the metal ions and the 
p orbitals of the organic ligand leads to delocalization of electrons 
with significantly higher conductivity, compared to conventional 
MOFs. However, in most cases, charge transport properties of such 
conductive 2D MOFs are dominated by thermally activated conduc-
tion, indicative of incomplete bulk metallicity due to impurities or 
randomness coming from grain boundaries (9–12).

Among them, copper-BHT complex with a formula of [Cu3(C6S6)]n 
(Cu-BHT) exhibits extremely high conductivity at room tempera-
ture (∼2500 S·cm−1) (13). This material consists of stacked  − d 
conjugated 2D nanosheets with Cu2+ ions and BHT ligands, forming 
a perfect kagome lattice of Cu2+ with S = 1/2 spins (see Fig. 1, A to C). 
In Cu-BHT, in contrast to conventional MOFs with relatively large 
nanopores, the Cu ions and the BHT ligands are connected in an 
extremely dense manner (Fig. 1A). This leads to a large hybridiza-
tion of the d orbitals of the Cu ions and the  orbitals of the BHT 
ligands, resulting in an electronic structure having bands crossing 
the Fermi level, as confirmed by band structure calculations based 
on the lattice structure derived from x-ray diffractions (13). This 
unique structure of Cu-BHT and recent substantial improvement of 
sample quality have enabled to realize metallization in Cu-BHT, and, 
unexpectedly, even superconductivity at around 0.25 K has been 
reported (13). Note that to the best of our knowledge, this is the first 
report of superconductivity in coordination polymers.

The superconducting transition temperature Tc of Cu-BHT is quite 
low, and its pairing mechanism has been considered in the frame-
work of the conventional weak-coupling Bardeen-Cooper-Schrieffer 
(BCS) theory based on electron-phonon coupling from first-principles 
calculations (14). However, its 2D perfect kagome lattice of S = 1/2 
spins is a long-standing desire in material chemistry and physics to 
realize quantum spin liquids, and its relation with high-Tc super-
conductivity has been widely discussed (15–18). Recent heat capacity 
and magnetic susceptibility measurements in Cu-BHT (13) have 
revealed the absence of any long-range magnetic order down to 
50 mK and the presence of strong spin fluctuations related to the 
kagome lattice. Strongly enhanced spin fluctuations can promote un-
conventional (non-BCS) superconducting pairing, which has been 
observed in strongly correlated electron systems, such as high-Tc 
cuprates, iron pnictides, organics, and heavy fermions (19–22). It 
is therefore quite important to experimentally determine whether 
the superconductivity in Cu-BHT has conventional or unconven-
tional nature. Here, we report on a comprehensive study on the 
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superconducting properties of Cu-BHT via transport, optical, and 
magnetic penetration depth measurements, which reveals that con-
trary to the theoretical proposal (14), Cu-BHT is a new member of 
strongly correlated unconventional superconductors, possibly orig-
inating from electron correlations enhanced by geometrical frustra-
tion of the kagome lattice.

RESULTS
Transport and optical properties of Cu-BHT
Highly crystalline samples of Cu-BHT with a thin-film structure 
studied here were prepared via the liquid-liquid interface reaction 
(see the Supplementary Materials) (11, 13). Figure 1D shows the 
temperature dependence of normalized in-plane dc resistivity  in 
Cu-BHT, demonstrating a metallic behavior (d/dT > 0) down to low 
temperatures, accompanied by a clear superconducting transition at 
around 0.25 K (see the inset of Fig. 1D). Note that we have measured 
multiple samples of Cu-BHT, all of which show a clear supercon-
ducting transition, but Tc is somewhat different among samples (see 

fig. S1). This could be related to the unconventional superconduc-
tivity of Cu-BHT, as discussed later.

The metallic behavior in Cu-BHT has been also confirmed in 
optical spectroscopy measurements. Figure 1E shows the optical 
reflectivity spectra R() of Cu-BHT. In general, in metals, the so-
called Drude response can be observed in R(), in which two char-
acteristic features are detected (23); one is a high reflectivity value 
close to unity in the low-energy region, and the other is the plasma 
edge given by ​​​ p​​  =  ​√ 

___________

 ​e​​ 
2
​ ​n​ 3D​​ /( ​ϵ​ 0​​ ​m​​ *​ ​​) (where n3D and m* are the 3D carrier density and effective mass of conducting electrons, respectively), 

above which R() starts to saturate. Both features can be clearly seen 
in R() of Cu-BHT; as wave number approaches zero, R() goes to 
unity, whereas R() shows a saturation at around 1000 to 2000 cm−1 
(see Fig. 1E). The overall spectra of the reflectivity can be well fitted 
to the Drude-Lorentz model, from which we have extracted the cor-
responding optical conductivity spectra 1() including a Drude term, 
as shown in the inset of Fig. 1E (see the Supplementary Materials). 
These metallic features observed both in the dc limit and at finite 
frequencies provide strong evidence for the realization of band trans-
port in Cu-BHT.

Upper critical fields of Cu-BHT
Having established that band transport is realized in Cu-BHT, we 
next discuss the superconducting nature of Cu-BHT. To this end, 
first we measured the upper critical field Hc2. Figure 2 (A and B) 
shows the temperature dependence of in-plane resistivity in magnetic 
fields perpendicular (H⊥) and parallel (H∥) to the in-plane direction, 
respectively. The superconducting state is maintained up to higher 
magnetic fields for the H∥ configuration than for the H⊥ configura-
tion. Figure 2C depicts the temperature dependence of the perpen-
dicular and parallel upper critical fields, Hc2⊥(T) and Hc2∥(T). For both 
directions, Hc2 is well described by the Werthamer-Helfand-Hohenberg 
(WHH) model (24). The observed anisotropy parameter  ≡ 
Hc2∥(0)/Hc2⊥(0) ∼ 1.5 is comparable to those of iron-based super-
conductors such as SrFe2(As1−xPx)2 (25) and LiFeAs (26) with 
cylindrical Fermi surfaces ( = 1.4 and 1.3, respectively), indicat-
ing the quasi-2D nature of superconductivity in Cu-BHT. Note 
that the out-of-plane coherence length of Cu-BHT is estimated to 
be ⊥ = 27 nm, which is much shorter than the thickness of the 
superconducting region of the Cu-BHT samples studied here 
(∼2.5 m), meaning that the quasi-2D superconductivity of Cu-BHT 
originates from the electronic structure itself not from the thin-
film effect.

Superconducting gap structure of Cu-BHT
An important question concerning the newly found quasi-2D super-
conductivity in Cu-BHT is what is the interaction that glues the 
electrons into Cooper pairs. Conventional phonon-mediated pairing 
leads to a superconducting gap opening all over the Fermi surfaces, 
while unconventional pairing mechanisms, such as spin fluctuations, 
can lead to an anisotropic gap with nodes where the superconducting 
gap becomes zero (27). Such a nodal structure has been observed in 
d-wave superconductors such as cuprates, heavy fermions, and or-
ganic conductors, where the low-energy superconducting quasipar-
ticle excitations remain finite even at low temperatures.

There are several physical quantities sensitive to the supercon-
ducting quasiparticle excitations. Among them, magnetic penetra-
tion depth , which is one of the most fundamental properties of 
superconductors (28), is a sensitive probe of the low-energy 
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Fig. 1. Crystal structure of Cu-BHT and its transport and optical properties. 
(A and B) Crystal structure of Cu-BHT viewed along the c direction (A) and viewed 
from the side (B). The lattice parameters, ​a  =  8.675 ​A ̊ ​​ and c = 3.489 ​​A ̊ ​​, were deter-
mined by the powder x-ray diffraction pattern (13). The black dotted parallelogram 
in (A) indicates the in-plane unit cell. The green shaded area indicates the perfect 
kagome lattice of Cu2+ ions. (C) High-resolution transmission electron microscopy 
image of Cu-BHT. The top right inset displays the amplified image with higher 
magnification focused on the square area in the main panel. (D) Temperature de-
pendence of the in-plane resistivity in Cu-BHT. The inset shows the low-temperature 
data below 0.4 K. A sharp superconducting transition is observed at around 0.25 to 
0.3 K. (E) Optical reflectivity spectra (blue circles) in Cu-BHT measured at 4 K. The 
black solid line is the fit to the Drude-Lorentz (DL) model. The inset shows the op-
tical conductivity spectra (red line) obtained from the optical reflectivity (see the 
Supplementary Materials). The green line represents the Drude term. The blue circle 
in the inset shows the value of the dc conductivity obtained from the standard 
four-probe method at 4 K (1(0) = 1/ = 2500 ohm−1cm−1), which is consistent with 
1(0) obtained from the optical measurements. The plasma frequency p was esti-
mated to be ∼880 cm−1, at which 1() of the Drude term becomes almost zero.
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quasi-particle excitations, and it directly relates with the 3D carrier 
density of superconducting electrons n3D through the relation 2(0) = 
m*/(0e2n3D), where (0) is the magnetic penetration depth at absolute 
zero, and m* is the effective mass of the superconducting carriers. 
In this study, we measured the magnetic penetration depth of Cu-
BHT down to 40 mK by using a tunnel diode oscillator (TDO) in a 
dilution refrigerator (see the Supplementary Materials). Figure 3A 
shows the total frequency shift accompanied by the superconduct-
ing transition, which is directly related to the magnetic susceptibility 
 and magnetic penetration depth . A clear drop in the frequency 
shift has been observed at 0.2 to 0.25 K, which confirms the super-
conducting Meissner state, evidencing bulk superconductivity in 
Cu-BHT. A relatively broad superconducting transition may be 
attributed to the thin-film structure of Cu-BHT; the magnetic 
penetration depth near Tc becomes longer than the thickness of the 
superconducting region of the sample, which prevents a full super-
conducting shielding, resulting in the broad superconducting tran-
sition (29). The importance of phase fluctuations in superconductors 
with small superfluid density has been discussed in quasi-2D super-
conductors (30), which may also broaden the superconducting 
transition. Since Cu-BHT has a 2D structure with extremely low 
superfluid density discussed later, the effect of phase fluctuations 
near Tc may affect the superconducting transition width.

Next, we focus on the low-temperature part of the magnetic penetra-
tion depth measurements. The absolute value of ​(0 ) = ​√ 

____________
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velocity of light), which is comparable to the typical thickness of the 
superconducting region of the present Cu-BHT samples (∼2.5 m). 
In general, when the thickness t of a superconductor is comparable 
to the magnetic penetration depth , we need to consider the so-
called Pearl length eff = 2/teff [where teff = 2tanh (t/2)] as the 2D 
screening length (31, 32). By considering such a thin-film effect, we 
obtained the magnetic penetration depth from the measured frequency 
shift (for details, see the Supplementary Materials). Figure 3B de-
picts (T)/(0) as a function of T/Tc, where (T) ≡ (T) − (0). 
In conventional BCS superconductors with an isotropic full-gap 
structure, the temperature variation of the magnetic penetration 
depth is of an activated type at low temperatures (28),

 ​
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with 0 = 1.76 kBTc. Thus, (T)/(0) 

becomes almost T independent at low temperatures. In stark 

contrast, (T)/(0) of Cu-BHT shows a steeper slope at low tem-
peratures (see Fig. 3B).

In unconventional superconductors with line nodes in the gap 
such as d-wave cuprates, the low-temperature (T) is proportional 
to T (33). There are a few mechanisms that can affect the exponent 
 in the power-law temperature dependence of (T) ∝ T. It has 
been discussed that the effects of nonmagnetic impurity scattering 
(33) and quantum criticality (34) tend to increase the exponent . 
In d-wave superconductors, the nonmagnetic impurity effect (33) 
changes the low-temperature variation of  from T to T2, whereas in 
quantum critical superconductors with line nodes, a T1.5 dependence 
is often found, which is related to the temperature-dependent mass 
renormalization (34–36). Thus, the low-temperature exponent  in 
the line-node case is expected as 1 ≤  ≤ 2. As shown in the inset of 
Fig. 3B, (T)/(0) follows a T2 dependence. Thus, the obtained T2 
behavior is consistent with the presence of line nodes in the super-
conducting gap function with impurities.

Next, we consider magnetic impurity effects that can change the 
temperature dependence of the magnetic penetration depth. If the 
normal state of a superconductor is paramagnetic, the measured mag-
netic penetration depth m(T) is given by ​​​ m​​(T ) = ​​ L​​(T ) ​√ 

_
 1 + ​​ N​​(T) ​​ 

(37), where L is the London penetration depth and N(T) = 1 + C/
(T + CW) is the normal-state susceptibility (here, C is the Curie-Weiss 
constant and CW is the characteristic temperature for magnetic in-
teraction). Since N(T) increases with decreasing temperature, L(T) 
shifts downward from the value of m(T) more largely at lower tem-
peratures. Therefore, if the paramagnetic effect exists in Cu-BHT, 
L(T) shows a steeper temperature dependence than m(T) and the 
exponent of L(T) ∝ T becomes smaller than that of m(T). Such 
analysis results have been obtained in electron-doped cuprates 
(37, 38) and iron-based superconductors (39). Thus, even if we con-
sider the paramagnetic effect for Cu-BHT, the exponent of L(T) ∝ 
T is expected to be smaller than 2, suggesting the presence of gap 
nodes in Cu-BHT. We also note that in the presence of local magnetic 
impurities that act as free spins, conventional (s-wave) full-gap super-
conductivity can change to a gapless state, resulting in a T2 depen-
dence of (T) (28, 40). However, in our present experiment down 
to ∼40 mK, no Curie term due to local magnetic impurities has been 
observed in the frequency change of the TDO. The TDO measure-
ments are very sensitive to the presence of local magnetic impurities, 
which can be detected as a low-temperature upturn in the frequency 
change described by the Curie law with CW ∼ 0. Such an upturn in 
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the TDO technique has been observed in iron-based superconduc-
tors with a small amount of magnetic impurities on the order of 0.1% 
in volume (41). Therefore, the possibility of gapless excitations due 
to magnetic impurities is unlikely in the present Cu-BHT case.

One may also consider that strong quantum fluctuations as dis-
cussed below can break the Cooper pairs, leading to a nonexponen-
tial behavior of (T) even in a full-gap superconducting state. Since 
the magnitude of renormalization due to quantum fluctuations in-
creases with decreasing temperature, the lower the temperature, the 
greater the effect of renormalization due to quantum fluctuations 
on the magnetic penetration depth (36). As a result, in the case of 
line-node superconductors, the T-linear dependence of (T)/(0) 
changes to a T1.5 dependence in a wide temperature range as men-
tioned above. Likewise, in the case of fully gapped superconductors, 
(T)/(0) is expected to show a flatter temperature dependence at 
low temperatures. This implies that in the full-gap case, power-law 
behavior due to strong quantum fluctuations cannot be expected.

The superconducting transition temperature of Cu-BHT is as low 
as 0.25 K, making it difficult to measure the magnetic penetration 
depth down to low enough temperatures to precisely determine the 
presence or absence of nodes in the gap. Therefore, for more de-
tailed analysis of the superconducting gap structure, we plotted the 
normalized superfluid density s(T) ≡ 2(0)/2(T) as a function of 
T/Tc (see Fig. 3C). The overall temperature dependence of s is con-
sistent with that expected in d-wave superconductors with impurities 
(42) (green dashed line), evidencing the emergence of unconven-
tional superconductivity with sign change of the superconducting 
order parameter in Cu-BHT. We note that a deviation from the theory 
near Tc may come from the thin-film effect and/or phase fluctuations 
near Tc, discussed above.

DISCUSSION
To discuss the unconventional superconductivity of Cu-BHT in 
comparison with various superconductors, we constructed the so-
called Uemura plot (an empirical relation between Tc and the effec-
tive Fermi temperature TF, see Fig. 4), together with the results of 
various types of superconductors (43–47). Here, TF is proportional 
to the effective 2D carrier density given by n2D/(m*/m0) for 2D systems 
(see the Supplementary Materials). It is widely discussed that the 
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Fig. 4. Uemura plot. Tc is plotted against the effective superfluid density (bottom 
axis) given by n2D/(m*/m0) for 2D systems and ​1.52 ​n​3D​ 2/3​ / (​m​​ *​ / ​m​ 0​​)​ for 3D systems, where 
n2D is the carrier concentration within the superconducting planes for 2D systems, 
n3D is the carrier concentration for 3D systems, and m0 is the free electron mass. 
Here n2D = n3D × d, where d is the interlayer spacing of the superconducting 
planes in 2D systems. Note that TF (top axis) is proportional to the effective car-
rier density n2D through the relation TF = ℏ2n2D/(kBm*). For Cu-BHT, the 2D for-
mula was used (for details, see the Supplementary Materials). The error bar of Tc 
is determined by the sample dependence in the magnetic susceptibility mea-
surements (see fig. S1B). The error bar of ​​​T​ F​​​(​​ = ​  ​ℏ​​ 2​ d _ 

​​ 0​​ ​e​​ 2​ ​k​ B​​
​ ​​​ −2​(0 ) ​)​​​​ comes from the un-

certainty of the absolute value of the zero-temperature magnetic penetration 
depth (0). In this study, we evaluated (0) from the plasma frequency p = 
880 ± 80 cm−1 measured at 4 K through the relation (0) = c/p. Since the previ-
ous specific heat studies (13) point to an increase in the effective mass below 1 K 
due to possible quantum fluctuations, the possibility that TF decreases owing 
to the temperature variation of the effective mass below 1 K should be taken 
into account, which is the main source of the error of TF. Therefore, we evaluated 
the error bar by considering that the electronic specific heat coefficient el ∝ m* is 
enhanced below 1 K from 15 mJ·mol−1K−2 above 1 K to 40 mJ·mol−1 K−2 at 0.2 K. The 
black dashed line is the Bose-Einstein condensation temperature for the ideal 
3D boson gas. The blue solid line represents the line where Tc = TF. Here, BEDT-
TTF and TMTSF stand for bis(ethylenedithio)tetrathiafulvalene and tetramethyl
tetraselenafulvalene, respectively, and LAO and STO represent LaAlO3 and 
SrTiO3, respectively. TBG and EDLT stand for twisted bilayer graphene and 
electric double layer transistor, respectively.
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ratio of Tc to TF reflects the strength of the superconducting pairing 
interaction; in conventional weak-coupling BCS superconductors, 
such as Al and Sn, Tc/TF is quite low (∼10−5), whereas in strongly 
correlated superconductors, such as cuprates, iron pnictides, organ-
ics, and heavy fermions, Tc/TF becomes high (∼10−2). As shown 
by the light blue triangles in the Uemura plot, in the conventional 
superconductors, only a tiny portion of electrons near the Fermi 
energy experience the superconducting gap, and Tc strongly varies 
in materials with similar superfluid densities depending on the 
superconducting strength. In sharp contrast, in the strongly cor-
related unconventional superconductors, Tc has a strong correla-
tion with superfluid density, which is close to the linear relation 
expected for the Bose-Einstein condensation where the strong cou-
pling between electrons leads to molecular-like bound pairs. What 
is notable here is that Cu-BHT is located on the trend line on which 
all the strongly correlated superconductors lie (Tc/TF = 0.025 in Cu-
BHT). This result implies that the unconventional superconductiv-
ity in Cu-BHT originates from strong electron correlations like 
other strongly correlated electron systems. We also point out that 
the superfluid density in this system is extremely low compara-
ble to heavy fermion systems, corresponding to the very low Tc ≈ 
0.25 K, which places Cu-BHT on the bottom left corner in the 
Uemura plot.

A key question raised here is what is the mechanism of the strongly 
correlated unconventional superconductivity in Cu-BHT. As reported 
in the previous work (13), the normal-state heat capacity C and 
magnetic susceptibility show anomalous behaviors. The temperature 
dependence of C/T below 1 K follows C/T ∼ T−2/3, which is indica-
tive of non-Fermi liquid behavior. This implies that the effective mass 
in the zero-temperature limit is significantly enhanced from the 4 K 
value, which pushes the superfluid density even smaller than that 
estimated from the optical spectroscopy (see the error bar in Fig. 4). 
Such a temperature dependence of C/T setting in at very low tem-
peratures appears to be consistent with the extremely low effective 
Fermi temperature (∼8.5 K) in this system. The Curie-Weiss analysis 
of the magnetic susceptibility (13) also shows an effective moment 
of eff ∼ 1.79 B close to that expected for Cu2+ with S = 1/2 spins 
(1.73 B), with no sign of long-range magnetic ordering at least down 
to 2 K despite a large magnitude of the Weiss temperature of −1400 K 
(13). These results suggest that the present system is close to a 
metallic quantum spin liquid state with strong quantum fluctuations 
arising from the geometrically frustrated kagome-lattice structure, 
as discussed in geometrically frustrated Kondo lattice systems (48, 49). 
Recent theoretical calculations (50) have predicted the coexistence 
of frustrated local spins of Cu2+ and itinerant electrons of  orbitals 
in 2D MOF materials. Therefore, the unconventional pairing mech-
anism related to spin fluctuations in a metallic spin liquid state may 
be relevant in Cu-BHT. Our present findings may motivate experi-
mental and theoretical studies on the relationship between uncon-
ventional superconductivity and quantum spin liquids. Considering 
the flexibility of designing crystal structures in MOFs, MOFs can 
provide a promising platform to study physical phenomena in con-
densed matter physics (51–55).

MATERIALS AND METHODS
Sample preparation
Highly crystalline samples of Cu-BHT were synthesized by the liquid-
liquid interface reaction between BHT/chloroform and copper(II) 

nitrate/H2O, as described in (13). The typical lateral size of the sam-
ples is larger than 1 × 1 mm2, while the thickness is as small as a few 
micrometers. Cu-BHT films for the magnetic penetration depth 
measurements were cut into small pieces of samples with dimen-
sions of about 350 m by 350 m.

Electrical transport measurements
The in-plane electrical resistivity was measured by the standard 
four-probe method in a dilution refrigerator down to 100 mK. The 
electrical contacts were made on the surface using carbon paste. 
The applied current was reduced to less than 500 nA to avoid 
Joule heating.

Optical reflectivity measurements
The optical reflectivity measurements were carried out with a 
Fourier transform microscope spectrometer in the range of 200 to 
8000 cm−1. In the far-infrared region (200 to 600 cm−1), a synchrotron 
radiation light source at BL43IR in SPring-8 was used. The optical 
conductivity was obtained by fitting the optical reflectivity to the 
Drude-Lorentz model (56). The absolute value of the reflectivity was 
determined by comparison with a gold thin film evaporated on a 
glass plate, which was attached on the sample holder where the 
samples were fixed.

Magnetic penetration depth measurements
The temperature variation of the in-plane magnetic penetration 
depth (T) was measured by using the TDO technique operating 
at a resonant frequency of ∼14 MHz in a dilution refrigerator down 
to ∼40 mK (46). The sample was mounted on a sapphire rod with 
Apiezon N grease and inserted into a copper coil that is a part of the 
LC circuit. The shift in the resonant frequency f directly reflects 
the change in the magnetic penetration depth . The samples were 
cooled slowly (with a rate less than 1.0 K/min) to avoid introducing 
cracks into samples.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/12/eabf3996/DC1
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