Electronic and magnetic properties of intermetallic kagome magnets RV_6Sn_6 (R = Tb - Tm)

Xiaoxiao Zhang^{1,2} Ziyi Liu,¹ Qi Cui,¹ Qi Guo,^{1,2} Ningning Wang^{1,2} Lifen Shi,^{1,2} Hua Zhang,¹ Weihua Wang,^{1,2,3}

Xiaoli Dong^{1,2,3} Jianping Sun^{1,2} Zhiling Dun^{1,2,*} and Jinguang Cheng^{1,2,†}

¹Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,

²School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

³Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

(Received 13 June 2022; accepted 27 September 2022; published 10 October 2022)

We present a systematic study of the structure, electronic, and magnetic properties of a new branch of intermetallic compounds, RV_6Sn_6 (R = Tb - Tm) by using x-ray diffraction, magnetic susceptibility, magnetization, electrical transport, and heat-capacity measurements. These compounds feature a combination of a nonmagnetic vanadium kagome sublattice and a magnetic rare-earth triangular sublattice that supports various spin anisotropies based on different R ions. We find magnetic orders for the R = Tb, Dy, and Ho compounds at 4.4, 3, and 2.5 K, respectively, while no ordering is detected down to 0.4 K for the R = Er and Tm compounds with easy-plane anisotropies. Electronically, we found no superconductivity or charge ordering transition down to 0.4 K for any member of this family, while all compounds exhibit multiband transport properties.

DOI: 10.1103/PhysRevMaterials.6.105001

I. INTRODUCTION

Kagome metals have been at the forefront of condensed matter physics due to the quantum-level interplay between geometry, topology, and correlation [1–8]. On one hand, local moments on a lattice formed by corner-shared triangles induce strong frustration which serves as an important ingredient in realizing quantum spin liquids [1,9,10]. On the other hand, the electronic band structure of kagome lattice usually gives rise to flat bands, inflection points, and Dirac cones that promote nontrivial topology [3,6,7,11–16]. The combination of these effects usually gives rise to exotic states with possible capabilities of magnetic field and high-pressure engineering.

As an example, a recently discovered family of kagome metals, AV_3Sb_5 (A = K, Rb, Cs), has attracted tremendous research interest as a novel platform to study the interplay between nontrivial band topology, superconductivity, and charge density-wave (CDW) order [17–23]. The most prominent feature of this structure is the presence of a kagome net of vanadium atoms that are coordinated by Sb atoms, giving rise to Z_2 topological states with Dirac nodal points near the Fermi level [17,19,20]. Meanwhile, superconductivity was discovered at ambient pressure below 0.93, 0.92, and 2.5 K for A = K, Rb, and Cs compounds, respectively [18–20,22,23], which was found to compete with an unusual charge order at high temperature [21,24–26]. This example shows the urgent need to explore the unusual superconductivity of other vanadium-based kagome intermetallics.

Another large family of kagome metal is RM_6X_6 which crystallize in the MgFe₆Ge₆ structural prototype. The *R* site hosts a variety of rare-earth ions (Y, Gd - Lu), *M* is 3*d*

2475-9953/2022/6(10)/105001(8)

transition metal elements (e.g., Co, Cr, Mn, V, Ni...), and the X site is generally restricted to the group-IV elements (Si, Ge, Sn). In these compounds, M atoms form a kagome lattice and R atoms form a triangular lattice; the two sublattices are stacked along the c axis in the ABA sequence to form a hexagonal structure [Figs. 1(a) and 1(b)]. Among them, RMn_6Sn_6 has recently received the most attention due to the coexistence of topological band structure and magnetic order [16,27,28]. With the Mn-sublattice ordering at room temperature, the spin-orbit coupling and the ferromagnetic moment outside the ab plane open an energy gap near the Fermi surface, giving rise to Chern gapped Dirac fermion properties [16,27]. An important feature of the system is that both the Mn and Rsublattices possess localized magnetic moments which are strongly coupled with each other. Recent study has demonstrated a close relationship between rare-earth magnetism and topological electron structure, indicating that the rare-earth elements can effectively engineer the Chern quantum phase in these materials [27,28]. This is partially reflected in the distinct Mn-R spin orientations with different R sublattice. The magnetic anisotropy varies from easy plane for R = Gd, easy axis for R = Tb, to a conical magnetic structure for R = Dy and Ho [29–31]. When R = Er, Tm, the Mn and rare-earth sublattices order independently in an antiferromagnetic manner because the strength of the magnetic coupling is weak [30,31]. In this sense, further understanding of the electronic and magnetic properties in RMn₆Sn₆ requires an in-depth understanding of the *R*-sublattice magnetism.

In this work, we explore a new family of V-based kagome metals RV_6Sn_6 , and systematically study the structural, electronic, and magnetic properties for R = Gd - Tm compounds. These compounds are isostructural to its RMn_6Sn_6 cousin and possess a similar nonmagnetic vanadium kagome sublattice as AV_3Sb_5 . Four members of this family have been investigated very recently. Specifically, studies have

Chinese Academy of Sciences, Beijing 100190, China

^{*}dun@iphy.ac.cn

[†]jgcheng@iphy.ac.cn

FIG. 1. (a) Crystal structure of RV_6Sn_6 showing alternating kagome and triangular layers. (b) Top view of crystal structure from the *c* axis. (c) Observed (red circle), calculated (black line), and difference (blue line) profiles of the powder XRD patterns of DyV_6Sn_6 from Rietveld refinements. Inset of (c) shows the photo of a millimeter-size DyV_6Sn_6 single crystal. Ionic radii dependence of (d) cell parameters *a* and *c*, and (e) the unit cell volume.

identified two-dimensional kagome surface states in HoV₆Sn₆ and GdV_6Sn_6 [32,33], quantum oscillation in YV_6Sn_6 [33], and CDW transition at 92 K in ScV₆Sn₆ [34]. Compared to RMn₆Sn₆, the absence of Mn-Mn and Mn-R couplings enables us to study the intrinsic rare-earth magnetism on a frustrated triangular lattice. By combining the experimental probes of x-ray diffraction (XRD), DC magnetic susceptibility $[\chi(T)]$ and isothermal magnetization [M(H)], and heat capacity $[C_p(T)]$, as well as transport measurements including resistivity $[\rho(T)]$, magnetoresistance [MR(H)], and Hall resistivity $[\rho_{xy}(H)]$, we show that (i) there is no superconductivity or charge ordering transition down to 0.4 K for any member of this family; (ii) all compounds exhibit multiband transport properties that originate from the electronic bands of the vanadium kagome sublattice; (iii) with either strong (R = Tb) or weak (R = Dy, Ho) easy-axis anisotropies, the system orders at 4.4, 3, and 2.5 K, respectively; and (iv) with easy-plane anisotropy, no magnetic ordering is detected down to 0.4 K for the R = Er and Tm compounds.

II. EXPERIMENTAL DETAILS

Single crystals of RV_6Sn_6 (R = Tb, Dy, Ho, Er, Tm) were synthesized via a self-flux method. Powder forms of rare-earth elements, abraded from metal blocks (99.99%), along with V (powder, 99.9%) and Sn (shot, 99.999%) were loaded inside an alumina crucible with the molar ratio of 1:6:50 and then sealed in evacuated quartz tubes under 10^{-4} torr pressure. The tubes were heated to 1125 °C and dwell for 24 hours before cooling down slowly at a rate of 2 °C/h. The single crystals were separated from the flux via centrifuging at 825 °C. Crystals grown via this method were generally a few millimeters (mm) in length and 1 mm in thickness [Fig. 1(c), inset]. The separated single crystals were subsequently cleaned with dilute HCl to remove the flux contamination.

Single-crystal XRD measurement on TmV_6Sn_6 were carried out on a Bruker D8 Venture single-crystal diffractometer. XYZ centroids of 3012 reflections were collected and integrated using the Bruker SAINT software package. Powder XRD measurements on carefully grounded single-crystal samples were performed using a HUBER diffractometer at room temperature. Rietveld refinements were performed with the FULLPROF software package.

The magnetic properties, including DC susceptibility, and isothermal magnetization, were measured using a commercial magnetic properties measurement system (MPMS-III, Quantum Design) in the temperature range between 2 and 300 K under different external magnetic fields. Measurements from 0.4 to 1.8 K were performed using the same MPMS with the He3 option installed. Data measured using an empty holder

TABLE I. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for TmV₆Sn₆ from the refinement of single-crystal XRD data at T = 273 K. U_{eq} is defined as 1/3 of of the trace of the orthogonalized U_{ij} tensor.

Atom	Wyckoff pos.	x	у	z	$U_{ m eq}$				
Tm	1 <i>a</i>	0	0	0.5	0.053(3)				
V	6 <i>i</i>	0.5	0.5	0.748016(6)	0.0032(3)				
Sn1	2e	0	0	0.83167(5)	0.050(3)				
Sn2	2d	0.66667	0.33333	0.5	0.0029(3)				
Sn3	2c	0.33333	0.66667	0	0.0037(3)				
Reflections collected: 3012									
R_1 : 2.54%; wR_2 : 5.57%									

was used as background to correct the diamagnetic signals in different sample environments at high and low temperatures. With the corrected data, a modified Curie-Weiss (CW) fit was performed from 150 to 300 K, i.e., $\chi(T) = \chi_0 + C/(T - \theta_{CW})$, where χ_0 denotes the temperature-independent term arising from the Pauli and Van Vleck paramagnetism as well as diamagnetic signals of the nucleus, and θ_{CW} is the CW temperature.

The resistivity and specific-heat data in the temperature range from 1.8 to 300 K were collected with a physical properties measurement system (Quantum Design). A specific-heat measurement on a nonmagnetic YV_6Sn_6 single crystal was also measured and scaled to match that of RV_6Sn_6 above 100 K, which is used as an estimate of lattice contribution C_{lat} . The magnetic heat capacity, $C_{mag}(T)$, was then obtained by subtracting the C_{lat} from the measured $C_p(T)$.

III. CHARACTERIZATIONS

A. STRUCTURE

Powder XRD refinements confirm that all RV_6Sn_6 compounds crystallize in the hexagonal HfFe₆Ge₆-type structure with space group P6/mmm. The crystallographic parameters of TmV₆Sn₆ from single-crystal XRD are listed in Table I. As illustrated in Figs. 1(a) and 1(b), the ideal kagome layers

of V ions coordinated by Sn are separated by one *R*-triangle layer. With triangle layers of rare-earth elements and kagome layers of V elements stacked along the *c* axis, this series of compounds exhibits the same structure as RMn_6Sn_6 . As expected, the cell parameters *a* and *c*, as well as the volume of unit cell increase monotonically with the increase of R^{3+} ionic radii [Figs. 1(d) and 1(e)]. These parameters are summarized in Table II.

B. MAGNETIC PROPERTIES

We use $C_p(T)$, $\chi(T)$, and M(H) measurements to characterize the spin anisotropy of RV₆Sn₆ and identify possible magnetic orderings. For each compound, $\chi(T)$ and M(H)measurements were carried out under an external magnetic field applied both parallel and perpendicular to the c axis (Fig. 3). Modified CW fit to $1/\chi(T)$ were performed at high (150-300 K) and low temperatures (6-10 K) to extract the effective moment μ_{eff} , and CW temperature (θ_{CW}), respectively. As the magnetic moments of R ions tend to align at low temperatures, we extract low-temperature (6–10 K) θ_{CW} to evaluate the magnetic interactions among them. Different temperature ranges of CW fitting contribute to the difference of the CW temperatures from [35]. In order to compare the magnetic properties of our samples with another study [35], CW fit at high temperatures (150-300 K) was also performed to extract high-temperature θ_{CW} . Our results are basically consistent with those reported [35]. Some sample-dependent issues might still contribute to slight differences between the results in these two works. For all compounds and field applied in both directions, the numbers for μ_{eff} are generally in agreement with the theoretical free-ion moment (μ_{theory}) expected for R^{3+} ions (Table II), consistent with the localized moment picture of R^{3+} magnetism.

1. TbV_6Sn_6

The C_{mag} of TbV₆Sn₆ clearly shows a sharp peak at 4.4 K which can be seen clearly in C_{mag} [blue symbols in Fig. 2(b)]. A broad anomaly maximized around 40 K shows up in C_{mag} at high temperatures, which we attribute to the Schottky

TABLE II. Fitted parameters for RV_6Sn_6 (R = Tb - Tm), including (i) lattice parameters: a, c; (ii) magnetic property parameters: in-plane and out-of-plane CW temperature, θ_{CW}^{ab} , and θ_{CW}^c , in-plane and out-of-plane effective moment, μ_{eff}^{ab} and μ_{eff}^c .

	TbV ₆ Sn ₆	DyV ₆ Sn ₆	HoV ₆ Sn ₆	ErV ₆ Sn ₆	$\mathrm{TmV}_{6}\mathrm{Sn}_{6}$
		Lattice para	neters		
a (Å)	5.5200(2)	5.5162(2)	5.5126(5)	5.5084(3)	5.5043(3)
<i>c</i> (Å)	9.1830(6)	9.1792(5)	9.1756(9)	9.1736(6)	9.1714(6)
		Magnetic property	parameters		
Spin anisotropy	Easy axis (Ising)	Weak easy axis	Weak easy axis	Easy plane	Easy plane (XY)
$T_{N,C}$ (K)	4.4	3	2.5	_	-
Low temp. θ_{CW}^{ab} (K)	_	1.29	-10.73	0.07	-3.18
Low temp. θ_{CW}^c (K)	2.06	1.65	0.66	_	-
High temp. θ_{CW}^{ab} (K)	-50.47	-16.01	-14.42	4.42	12.69
High temp. θ_{CW}^c (K)	30.97	8.93	3.71	-33.46	-39.79
High temp. $\mu_{\text{eff}}^{ab}(\mu_B)$	9.84	10.43	10.33	9.59	7.95
High temp. $\mu_{\text{eff}}^{c}(\mu_{B})$	9.47	10.88	10.29	9.75	7.49
$\mu_{\text{theory}}(\mu_B)$	9.72	10.63	10.61	9.59	7.56

FIG. 2. (a) Measured C_p for RV_6Sn_6 (R = Y, Tb - Tm). (b) Magnetic heat capacity, C_{mag} , obtained by subtracting the lattice contribution from C_p . (c) Magnetic entropy obtained from integrating C_{mag}/T in (b).

anomaly of Tb³⁺ elevated crystal electric field. The integrated magnetic entropy S_{mag} reaches $R \ln 2$ at 10 K, and is relatively flat until 20 K, indicating that the lowest crystal field level is

a non-Kramers doublet that is well separated from the higher levels. The fully recovered S_{mag} from 2 to 100 K reaches 21.77 J/mol K, which is close to the full single-ion magnetic entropy of $R \ln 13$ expected for Tb³⁺ (total angular momentum J = 6).

The $\chi(T)$ of TbV₆Sn₆ exhibits paramagnetic behavior at high temperatures, while at low temperatures, a broad anomaly in χ_{ab} is observed around 60 K, which might be related to the broad C_{mag} anomaly around 50 K. A zero-field cooling and field-cooling divergence is observed below 4.4 K [Fig. 3(a) inset], consistent with the sharp peak seen in C_{mag} . It is noteworthy that the absolute value of χ_c is two orders of magnitude larger than that of χ_{ab} , indicating that the Tb magnetic moments tend to align along the crystallographic c axis. This is further confirmed by the M(H) at 0.4 K [Fig. 3(f)], where the magnetization along the c axis rapidly increases and saturates above 0.5 T to a moment of $9.72\mu_B/\text{Tb}$ while the number is merely $1.25\mu_B/\text{Tb}$ when the field is applied within the ab plane. With strong easy-axis anisotropy, a modified CW fit of χ_c at low temperatures yields $\theta_{CW} = 2.06$ K, suggesting an overall weak ferromagnetic interaction.

2. DyV₆Sn₆ and HoV₆Sn₆

Similar to that of TbV_6Sn_6 , we can identify a clear signature of magnetic ordering in DyV₆Sn₆ and HoV₆Sn₆ from Cmag, at 2.4 and 2.5 K, respectively. Interestingly, for DyV₆Sn₆, an additional transition at 3 K is present in C_{mag} whose origin is subject to further investigations. Broad anomalies between 20 and 50 K also show up in C_{mag} at high temperatures due to the Schottky anomaly of crystal field effects. For both samples, the integrated magnetic entropy S_{mag} continuously increases above the magnetic ordering temperature, whose values quickly exceed $R \ln 2$. This observation clearly demonstrates the existence of low-lying crystal field, meaning that the low-temperature rare-earth magnetism cannot be treated as effective spin 1/2. The fully recovered Smag from 2 to 100 K reaches 25.52 J/mol K for DyV₆Sn₆ and 24.51 J/mol K for HoV₆Sn₆, which are in reasonable agreement with the full single-ion magnetic entropy of $R \ln 15$ and $R \ln 16$ expected for Dy³⁺ (J = 15/2) and Ho³⁺ (J = 8), respectively.

For DyV_6Sn_6 , an abrupt anomaly in χ_c was observed at around 3 K while χ_{ab} becomes flat below 2.4 K, consistent with the two sharp peaks seen in C_{mag} . For HoV₆Sn₆, χ_c becomes flat around 2.5 K while a broad peak is observed in χ_{ab} at this temperature, consistent with the sharp peak seen in C_{mag} . It is noteworthy that the absolute value of χ_c and χ_{ab} are in the same order of magnitude for DyV₆Sn₆ and HoV₆Sn₆, indicating that the Dy and Ho magnetic moments tend to exhibit Heisenberg-like behavior. This is further confirmed by the M(H) at 0.4 K [Figs. 3(f) and 3(h)]. For DyV₆Sn₆, the magnetization along the c axis rapidly increases above 0.5 T and stays flat until 6 T where a jump to another plateau of 9.52 μ_B /Dy appears [Fig. 4(g) inset]. Accordingly, the M_{ab} reaches $6.73\mu_B/\text{Dy}$ at 7 T. For HoV₆Sn₆, the magnetization along the c axis rapidly saturates above 0.3 T to a moment of $8.81\mu_B$ /Ho while the moment keeps increasing to $9.71\mu_B$ /Ho until 7 T when the field is applied with the *ab* plane. This indicates the single-ion magnetism is still anisotropic and weak easy axis. The low-temperature CW fit of DyV_6Sn_6

FIG. 3. (a)–(e) Magnetic susceptibility of RV_6Sn_6 (R = Tb - Tm) in a log-linear scale. An external magnetic field of 0.1 T was applied both parallel (blue triangle) and perpendicular (red circle) to the *c* axis. Insets: zoom-in data at low temperatures from 0.4 to 7 K. (f)–(j) Field dependence of isothermal magnetization measured at 0.4 K, with field applied parallel (blue triangle) and perpendicular (red circle) to the *c* axis. Insets: M(H) curves in extended regions when hysteresis loop is present.

gives $\theta_{\rm CW} = 1.29$ and 1.65 K for χ_{ab} and χ_c , respectively, suggesting an overall weak ferromagnetic interaction for both directions. Accordingly, the same CW fit to HoV₆Sn₆ yields $\theta_{\rm CW}^{ab} = -10.73$ K and $\theta_{\rm CW}^c = -0.66$ K, indicating the dominating magnetic interaction is antiferromagnetic between Ho³⁺ moments in the *ab* plane.

3. ErV₆Sn₆ and TmV₆Sn₆

Different from the three compounds discussed above, we found no sign of magnetic ordering down to 1.8 K in ErV_6Sn_6 or TmV_6Sn_6 from C_{mag} . Instead, C_{mag} of TmV_6Sn_6 shows a broad peak below 10 K, likely due to the development of short-ranged magnetic correlations, which is, however, absent in ErV_6Sn_6 . The integrated magnetic entropy S_{mag} keeps increasing with neither anomaly nor plateaus observed until 60 K, suggesting the energy scale of the crystal fields are in the order of several meV. For ErV_6Sn_6 and TmV_6Sn_6 , the fully recovered S_{mag} from 2 to 100 K reaches 24.95 and 22.43 J/mol K, respectively, which is close to the full singleion magnetic entropy of $R \ln 16$ and $R \ln 13$ expected for $\text{Er}^{3+}(J = 15/2)$ and $\text{Tm}^{3+}(J = 6)$.

For ErV_6Sn_6 and TmV_6Sn_6 , there is no anomaly observed in χ_{ab} , confirming the absence of magnetic ordering down to 0.4 K. Broad anomalies in χ_c are observed around 20 and 60 K, which might be related to crystal field effects. No anomaly is observed in χ_{ab} and χ_c of ErV_6Sn_6 and TmV_6Sn_6 at low temperatures, consistent with the hump in C_{mag} . It is noteworthy that the absolute value of χ_{ab} is two orders of magnitude larger than that of χ_c for these two compounds, indicating that the Er and Tm magnetic moments tend to align in the *ab* plane. This is further confirmed by the M(H) at 0.4 K [Fig. 3(f)]. For ErV_6Sn_6 , the magnetization in the *ab* plane rapidly increases and saturates above 0.5 T to a moment of 7.41 μ_B /Er while the moment keeps increasing to 3.39 μ_B /Er at 7 T after a transition appeared at around 0.4 T when the field is applied along the *c* axis. For TmV₆Sn₆, the magnetization in the *ab* plane rapidly reaches $6.29\mu_B$ /Tm at 7 T, in sharp contrast to a number of $0.36\mu_B$ /Er when the field is applied along the *c* axis, suggesting that the TmV₆Sn₆ can be properly described by an *XY* effective spin model. With easy-plane anisotropy for both compounds, a low-temperature CW fit of χ_{ab} gives $\theta_{CW}^{ab} = 0.07$ K for ErV₆Sn₆ and $\theta_{CW}^{ab} = -3.18$ K for TmV₆Sn₆. This seems to suggest the average in-plane spin-spin interaction is antiferromagnetic for TmV₆Sn₆ while the magnitude is negligible in ErV₆Sn₆.

C. Transport properties

The main panel of Fig. 4(a) shows the temperature dependence of resistivity $\rho(T)$ at zero field for RV_6Sn_6 (R =Tb - Tm) compounds, and the typical metallic behavior can be seen for all samples. At low temperatures, an anomaly exhibits in the resistivity, which is associated with the formation of the magnetic order of Tb^{3+} , Dy^{3+} , and Ho^{3+} ions. The inset of Fig. 4(a) shows the enlarged view of resistivity in the low-temperature range; the sharp drop in resistivity at the magnetic ordering temperatures can be seen more clearly. For ErV_6Sn_6 and TmV_6Sn_6 , an anomaly was also observed at low temperatures even without magnetic order. When we increase the magnetic field to 1 T, the anomaly was suppressed in resistivity. We thus attribute this consistent drop in $\rho(T)$ to the scattering of the conduction electrons by optical phonons if the magnetic s-f contribution is neglected [36]. The possibility of Sn impurity superconductivity cannot be ruled out either. Here, we vertically shift all the resistivity curves for clarity.

FIG. 4. (a) The temperature dependence of normalized resistivity ρ/ρ (300 K) of RV_6Sn_6 (R = Tb - Tm). Inset: temperature dependence of resistivity measured without and with magnetic field of 1 T along the *c* axis. (b) The magnetic field dependence of magnetoresistivity of RV_6Sn_6 with an external magnetic field applied along the *c* axis.

Moreover, the transport behavior has strong dependence on the *R* ions, which we can see more clearly in the magnetoresistance (MR) at 2 K. As shown in Fig. 4(b), ErV₆Sn₆ and TmV_6Sn_6 exhibit a positive MR, while for R = Tb, Dy, and Ho, they show negative MR behavior. Since the localized R^{3+} ions do not participate directly in the electrical conduction, the observed distinct magnetoresistance behaviors in Fig. 4(b) can be ascribed in a conventional scenario to the different scattering processes of conduction electrons by the R^{3+} ions possessing different magnetic ground states and single-ion anisotropy. Consistent with the isothermal magnetization data shown in Fig. 3, the easy alignment of R^{3+} moments for R = Tb, Dy, and Ho along the *c* axis at low fields would reduce the scattering of conduction electrons and give rise to a negative magnetoresistance. Once the R^{3+} moments are aligned at low fields, the negative magnetoresistance is reverted to positive one at higher fields as shown in Fig. 4(b). In contrast, the c axis field can barely influence the R^{3+} moments with strong easy-plane anisotropy for R = Er and Tm, which thus display typical positive magnetoresistance behaviors due to the effect of Lorentz force. On the other hand, further investigations are needed to figure out whether the observed distinct phenomenon is associated with some nontrivial mechanisms; for example, the band topology of the vanadium kagome layers might be tuned by the magnetic ordering and/or the single-ion anisotropy of R^{3+} ions.

To further gain insights into the carrier information including carriers concentration and mobility of the series of RV₆Sn₆ samples, Hall resistivity measurements were performed. As displayed in Figs. 5(a)-5(e), the Hall resistivity $\rho_{xy}(H)$ was measured at various temperatures for the whole series of RV_6Sn_6 samples. The current was applied within the *ab* plane and the magnetic field applied along the *c* axis. The $\rho_{xy}(H)$ (ρ_{xx}) data were antisymmetrized (symmetrized) with respect to the data collected between +9 and -9 T. As can be seen, the $\rho_{xy}(H)$ for these compounds share similar behaviors with increasing temperature gradually. Specifically, the $\rho_{xy}(H)$ curves are linear with a hole-dominated band feature at temperatures above 200 K and the nonlinear behavior emerges at low temperatures, in agreement with the multiband character. To obtain the carrier concentration and mobility in these compounds, a two-band model was employed to fit the Hall conductivity $\sigma_{xy}(H)$ at different temperatures. Here, the longitudinal resistivity ρ_{xx} curves were also measured at the same time. The Hall conductivity $\sigma_{xy}(H)$ and twocarrier model were calculated based on the equation

$$\sigma_{xy} = -\frac{\rho_{xy}}{\rho_{xy}^2 + \rho_{xx}^2},\tag{1}$$

$$\sigma_{xy} = \left[n_h \mu_h^2 \frac{1}{1 + (\mu_h B)^2} - n_e \mu_e^2 \frac{1}{1 + (\mu_e B)^2} \right] eB, \quad (2)$$

where n_e and n_h are the carrier density of electrons and holes, while μ_e and μ_h are the mobility of electrons and holes.

Figures 5(f)-5(j) show the fitting results of carrier density and mobility. Above 150 K, the density of the hole for each sample is higher than that of the electron. The hole mobility of TbV₆Sn₆, DyV₆Sn₆, and TmV₆Sn₆ is also dominant while electron and hole mobilities possess similar values for HoV₆Sn₆ and ErV₆Sn₆ above 150 K. It is also verified that ρ_{xy} of all these samples exhibits hole-dominated behaviors. At temperatures below 100 K, a divergence for carrier density appears and seems to become stronger upon cooling down continuously. For DyV₆Sn₆, ErV₆Sn₆, and TmV₆Sn₆, the mobility of electrons and holes becomes comparable below 100 K. For TbV₆Sn₆, the electron carriers with larger mobility become dominant over the hole carriers while the carrier mobility of HoV_6Sn_6 has the opposite trend. In general, all samples exhibit hole-dominated behavior at high temperatures while two-band behavior prevails below 100 K, consistent with the ρ_{xy} data shown in Figs. 5(a)–5(e).

IV. DISCUSSION AND SUMMARY

In this study, we synthesized a series of $HfFe_6Ge_6$ -type kagome metals RV_6Sn_6 (R = Tb - Tm) single crystals

FIG. 5. (a)–(e) Magnetic field dependence of longitudinal resistivity ρ_{xy} measured at different temperatures. (f)–(j) Temperature dependence of carrier density, *n*, and mobility, μ , obtained from Hall conductivity fit.

and characterized their physical properties. Compared to the kagome superconductors AV_3Sb_5 (A = K, Rb, Cs), no CDW or superconductivity was observed down to 0.4 K in RV_6Sn_6 (R = Tb - Tm).

In comparison with RMn₆Sn₆, these V-based kagome metals have similar evolution of spin anisotropy for the rare-earth elements as their Mn-based counterparts [27]. Specifically, TbV₆Sn₆ exhibits strong Ising anisotropy, for which the magnetic moments tend to align to the c axis while TmV_6Sn_6 and ErV₆Sn₆ possess easy-plane anisotropy with moments lying in the *ab* plane at low temperatures. For $R = H_0$, Dy, more isotropic behaviors are observed. The dramatically different spin anisotropies originate from different crystalfield schemes of R^{3+} ions, whose effects further mediate the exchange couplings between 4f and 3d electrons, and thus becomes the key to engineer the magnetic structure and topological properties of RMn₆Sn₆ [16,27,28]. Moreover, the XY anisotropy of Tm^{3+} in $TmMn_6Sn_6$ is very surprising since all non-Kramers doublets should be described by an Ising moment of effective spin-1/2 [37], like that found in TbMn₆Sn₆. This means the magnetism of TmMn₆Sn₆ must involve more than one crystal-field level and request a different theoretical treatment. The absence of magnetic order in TmV_6Sn_6 in contrast to a moderate spin-spin coupling ($\theta_{CW}^{ab} =$ -3.18 K) may be due to the thermal fluctuations according to

- Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid states, Rev. Mod. Phys. 89, 025003 (2017).
- [2] B. Keimer and J. Moore, The physics of quantum materials, Nat. Phys. 13, 1045 (2017).
- [3] T. Park, M. Ye, and L. Balents, Electronic instabilities of kagome metals: Saddle points and landau theory, Phys. Rev. B 104, 035142 (2021).
- [4] J.-X. Yin, S. S. Zhang, H. Li, K. Jiang, G. Chang, B. Zhang, B. Lian, C. Xiang, I. Belopolski, H. Zheng et al.,

the Mermin-Wagner theorem [38]. Consider the complexity of long-ranged Ruderman-Kittel-Kasuya-Yosida interactions, it calls for further investigations to understand the absence of magnetic order in TmV_6Sn_6 .

It has been reported that YV_6Sn_6 and GdV_6Sn_6 show qualitatively similar band structures in the paramagnetic state [33]. As predicted by the density functional theory, the density of states in these materials are dominated by V *d* states. Thus our new synthesized materials, RV_6Sn_6 (R = Tb - Tm), are expected to possess a similar electronic band structure.

ACKNOWLEDGMENTS

This work is supported by the National Key R&D Program of China (Grants No. 2018YFA0305700 and No. 2021YFA1400200), the National Natural Science Foundation of China (Grants No. 12025408, No. 11874400, No. 11834016, No. 11921004, and No. 12174424), Beijing Natural Science Foundation (Grant No. Z190008), the Strategic Priority Research Program and Key Research Program of Frontier Sciences of CAS (Grants No. XDB25000000, No. XDB33000000, and No. QYZDB-SSW-SLH013), the CAS Interdisciplinary Innovation Team (Grant No. JCTD-2019-01), and Lujiaxi international group funding of K. C. Wong Education Foundation (Grant No. GJTD-2020-01).

Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet, Nature (London) **562**, 91 (2018).

- [5] G. Xu, B. Lian, and S.-C. Zhang, Intrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs₂LiMn₃F₁₂, Phys. Rev. Lett. **115**, 186802 (2015).
- [6] M. Pereiro, D. Yudin, J. Chico, C. Etz, O. Eriksson, and A. Bergman, Topological excitations in a kagome magnet, Nat. Commun. 5, 4815 (2014).

- [7] H. Li, B. Ding, J. Chen, Z. Li, Z. Hou, E. Liu, H. Zhang, X. Xi, G. Wu, and W. Wang, Large topological Hall effect in a geometrically frustrated kagome magnet Fe₃Sn₂, Appl. Phys. Lett. **114**, 192408 (2019).
- [8] Z. Y. Liu, T. Zhang, S. X. Xu, P. T. Yang, Q. Wang, H. C. Lei, Y. Sui, Y. Uwatoko, B. S. Wang, H. M. Weng *et al.*, Pressure effect on the anomalous Hall effect of ferromagnetic Weyl semimetal Co₃Sn₂S₂, Phys. Rev. Mater. **4**, 044203 (2020).
- [9] M. R. Norman, Colloquium: Herbertsmithite and the search for the quantum spin liquid, Rev. Mod. Phys. 88, 041002 (2016).
- [10] M. J. Lawler, A. Paramekanti, Y. B. Kim, and L. Balents, Gapless Spin Liquids on the Three-Dimensional Hyperkagome Lattice of Na₄Ir₃O₈, Phys. Rev. Lett. **101**, 197202 (2008).
- [11] N. J. Ghimire and I. I. Mazin, Topology and correlations on the kagome lattice, Nat. Mater. 19, 137 (2020).
- [12] Z. Li, J. Zhuang, L. Wang, H. Feng, Q. Gao, X. Xu, W. Hao, X. Wang, C. Zhang, K. Wu *et al.*, Realization of flat band with possible nontrivial topology in electronic kagome lattice, Sci. Adv. 4, eaau4511 (2018).
- [13] L. Ye, M. Kang, J. Liu, F. Von Cube, C. R. Wicker, T. Suzuki, C. Jozwiak, A. Bostwick, E. Rotenberg, D. C. Bell *et al.*, Massive Dirac fermions in a ferromagnetic kagome metal, Nature (London) 555, 638 (2018).
- [14] X. Zhang, L. Jin, X. Dai, and G. Liu, Topological type-II nodal line semimetal and Dirac semimetal state in stable kagome compound Mg₃Bi₂, J. Phys. Chem. Lett. 8, 4814 (2017).
- [15] M. Li, Q. Wang, G. Wang, Z. Yuan, W. Song, R. Lou, Z. Liu, Y. Huang, Z. Liu, H. Lei *et al.*, Dirac cone, flat band and saddle point in kagome magnet YMn₆Sn₆, Nat. Commun. **12**, 3129 (2021).
- [16] J.-X. Yin, W. Ma, T. A. Cochran, X. Xu, S. S. Zhang, H.-J. Tien, N. Shumiya, G. Cheng, K. Jiang, B. Lian *et al.*, Quantum-limit Chern topological magnetism in TbMn₆Sn₆, Nature (London) 583, 533 (2020).
- [17] B. R. Ortiz, L. C. Gomes, J. R. Morey, M. Winiarski, M. Bordelon, J. S. Mangum, I. W. H. Oswald, J. A. Rodriguez-Rivera, J. R. Neilson, S. D. Wilson *et al.*, New kagome prototype materials: Discovery of KV₃Sb₅, RbV₃Sb₅, and CsV₃Sb₅, Phys. Rev. Mater. **3**, 094407 (2019).
- [18] B. R. Ortiz, P. M. Sarte, E. M. Kenney, M. J. Graf, S. M. L. Teicher, R. Seshadri, and S. D. Wilson, Superconductivity in the Z₂ kagome metal KV₃Sb₅, Phys. Rev. Mater. 5, 034801 (2021).
- [19] Q. Yin, Z. Tu, C. Gong, Y. Fu, S. Yan, and H. Lei, Superconductivity and normal-state properties of kagome metal RbV₃Sb₅ single crystals, Chin. Phys. Lett. **38**, 037403 (2021).
- [20] B. R. Ortiz, S. M. L. Teicher, Y. Hu, J. L. Zuo, P. M. Sarte, E. C. Schueller, A. M. Milinda Abeykoon, M. J. Krogstad, S. Rosenkranz, R. Osborn *et al.*, CsV₃Sb₅: A Z₂ Topological Kagome Metal with a Superconducting Ground State, Phys. Rev. Lett. **125**, 247002 (2020).
- [21] Y.-X. Jiang, J.-X. Yin, M. M. Denner, N. Shumiya, B. R. Ortiz, G. Xu, Z. Guguchia, J. He, M. S. Hossain, X. Liu *et al.*, Unconventional chiral charge order in kagome superconductor KV₃Sb₅, Nat. Mater. **20**, 1353 (2021).
- [22] S. Ni, S. Ma, Y. Zhang, J. Yuan, H. Yang, Z. Lu, N. Wang, J. Sun, Z. Zhao, D. Li *et al.*, Anisotropic superconducting properties of kagome metal CsV₃Sb₅, Chin. Phys. Lett. **38**, 057403 (2021).

- [23] C. Mu, Q. Yin, Z. Tu, C. Gong, H. Lei, Z. Li, and J. Luo, S-wave superconductivity in kagome metal CsV₃Sb₅ revealed by ^{121/123}Sb NQR and 51V NMR measurements, Chin. Phys. Lett. **38**, 077402 (2021).
- [24] K. Y. Chen, N. N. Wang, Q. W. Yin, Y. H. Gu, K. Jiang, Z. J. Tu, C. S. Gong, Y. Uwatoko, J. P. Sun, H. C. Lei *et al.*, Double Superconducting Dome and Triple Enhancement of *T_c* in the Kagome Superconductor CsV₃Sb₅ under High Pressure, Phys. Rev. Lett. **126**, 247001 (2021).
- [25] F. H. Yu, D. H. Ma, W. Z. Zhuo, S. Q. Liu, X. K. Wen, B. Lei, J. J. Ying, and X. H. Chen, Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal, Nat. Commun. 12, 3645 (2021).
- [26] X. Chen, X. Zhan, X. Wang, J. Deng, X.-B. Liu, X. Chen, J.-G. Guo, and X. Chen, Highly robust reentrant superconductivity in CsV₃Sb₅ under pressure, Chin. Phys. Lett. **38**, 057402 (2021).
- [27] W. Ma, X. Xu, J.-X. Yin, H. Yang, H. Zhou, Z.-J. Cheng, Y. Huang, Z. Qu, F. Wang, M. Z. Hasan *et al.*, Rare Earth Engineering in *R*Mn₆Sn₆ (*R* = Gd Tm, Lu) Topological Kagome Magnets, Phys. Rev. Lett. **126**, 246602 (2021).
- [28] L. Gao, S. Shen, Q. Wang, W. Shi, Y. Zhao, C. Li, W. Cao, C. Pei, J.-Y. Ge, G. Li *et al.*, Anomalous Hall effect in ferrimagnetic metal *R*Mn₆Sn₆ (*R* = Tb, Dy, Ho) with clean Mn kagome lattice, Appl. Phys. Lett. **119**, 092405 (2021).
- [29] G. Venturini, B. C. El Idrissi, and B. Malaman, Magnetic properties of RMn_6Sn_6 (R = Sc, Y, Gd Tm, Lu) compounds with HfFe₆Ge₆ type structure, J. Magn. Magn. Mater. **94**, 35 (1991).
- [30] B. Malaman, G. Venturini, R. Welter, J. Sanchez, P. Vulliet, and E. Ressouche, Magnetic properties of RMn_6Sn_6 (R = Gd-Er) compounds from neutron diffraction and Mössbauer measurements, J. Magn. Magn. Mater. **202**, 519 (1999).
- [31] D. M. Clatterbuck and K. A. Gschneidner, Jr., Magnetic properties of *RMn*₆Sn₆ (*R* = Tb, Ho, Er, Tm, Lu) single crystals, J. Magn. Magn. Mater. **207**, 78 (1999).
- [32] S. Peng, Y. Han, G. Pokharel, J. Shen, Z. Li, M. Hashimoto, D. Lu, B. R. Ortiz, Y. Luo, H. Li *et al.*, Realizing Kagome Band Structure in Two-Dimensional Kagome Surface States of *RV*₆Sn₆ (*R* = Gd, Ho), Phys. Rev. Lett. **127**, 266401 (2021).
- [33] G. Pokharel, S. M. L. Teicher, B. R. Ortiz, P. M. Sarte, G. Wu, S. Peng, J. He, R. Seshadri, and S. D. Wilson, Electronic properties of the topological kagome metals YV₆Sn₆ and GdV₆Sn₆, Phys. Rev. B 104, 235139 (2021).
- [34] H. W. S. Arachchige, W. R. Meier, M. Marshall, T. Matsuoka, R. Xue, M. A. McGuire, R. P. Hermann, H. Cao, and D. Mandrus, Charge density wave in kagome lattice intermetallic ScV₆Sn₆, arXiv:2205.04582.
- [35] E. M. Jeonghun Lee, Anisotropic magnetic property of single crystals RV_6Sn_6 (R = Y, Gd Tm, Lu), arXiv:2206.02924.
- [36] K. Durczewski, Z. Gajek, and J. Mucha, Influence of electronphonon interaction and crystal field on thermal and electrical resistivity in rare earth intermetallics, Eur. Phys. J. B 93, 95 (2020).
- [37] Z. Dun, X. Bai, M. B. Stone, H. Zhou, and M. Mourigal, Effective point-charge analysis of crystal fields: Application to rare-earth pyrochlores and tripod kagome magnets *R*₃Mg₂Sb₃O₁₄, Phys. Rev. Res. **3**, 023012 (2021).
- [38] N. D. Mermin and H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models, Phys. Rev. Lett. 17, 1133 (1966).