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Recently, transition-metal-based kagome metals have aroused much research interest as a novel platform to explore
exotic topological quantum phenomena. Here we report on the synthesis, structure, and physical properties of a bilayer
kagome lattice compound V3Sb2. The polycrystalline V3Sb2 samples were synthesized by conventional solid-state-reaction
method in a sealed quartz tube at temperatures below 850 ◦C. Measurements of magnetic susceptibility and resistivity re-
vealed consistently a density-wave-like transition at Tdw ≈ 160 K with a large thermal hysteresis, even though some sample-
dependent behaviors were observed presumably due to the different preparation conditions. Upon cooling through Tdw, no
strong anomaly in lattice parameters and no indication of symmetry lowering were detected in powder x-ray diffraction
measurements. This transition can be suppressed completely by applying hydrostatic pressures of about 1.8 GPa, around
which no sign of superconductivity was observed down to 1.5 K. Specific-heat measurements revealed a relatively large
Sommerfeld coefficient γ = 18.5 mJ·mol−1·K−2, confirming the metallic ground state with moderate electronic correla-
tions. Density functional theory calculations indicate that V3Sb2 shows a non-trivial topological crystalline property. Thus,
our study makes V3Sb2 a new candidate of metallic kagome compound to study the interplay between density-wave-order,
nontrivial band topology, and possible superconductivity.

Keywords: V3Sb2, kagome metal, charge density wave, pressure effect
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1. Introduction
The kagome lattice compounds consisting of corner-

shared triangular network have been the focus of extensive
investigations over last decades because they can host fasci-
nating physical phenomena ranging from geometrically frus-
trated magnetism to nontrivial band topology.[1–13] When the
localized moments are situated on the kagome lattice, frus-
trated spin interactions can lead to exotic magnetic ground
states such as the quantum spin liquid state extensively stud-
ied in the herbertsmithite ZnCu3(OH)6Cl2.[14–19] On the other
hand, when the itinerant electrons are present, the metallic
kagome lattice compounds hold the gene to achieve nontriv-
ial electronic band structure containing Dirac cones, flat band,
and van Hove singularities.[20–24] Upon proper electron fill-
ing, these features can promote novel correlated and/or topo-
logical states, such as bond density wave order,[23,25] valence-
bond state,[26] chiral spin-density-wave (SDW) order,[21]

nontrivial charge-density-wave (CDW) order,[1,27–29] exotic
superconductivity,[12,23,30] etc. Thus, much experimental ef-
fort has been devoted to the metallic 3d transition-metal-based
kagome systems.

For the correlated magnetic kagome metals, the coex-

istence of spin and charge degrees of freedom leads to the
emergence of many novel quantum phenomena with non-
trivial electronic behaviors. For example, large anomalous
Hall effect (AHE) and Dirac fermions have been realized in
the ferromagnetic Fe3Sn2 with flat-band dominated electronic
band structure [7,31,32] and the quantum-limit Chern ferromag-
net TbMn6Sn6.[13] Large intrinsic AHE has been observed
in ferromagnetic Weyl semimetal Co3Sn2S2

[6,33,34] and non-
collinear antiferromagnetic Mn3Sn.[35] Dirac fermions have
also been revealed in the antiferromagnetic FeSn.[10,36] For
the recently discovered AV3Sb5 (A = K, Rb, Cs) family with
quasi-2D ideal kagome layers of V ions, no static magnetic or-
der was observed but they exhibit the coexistence and complex
competition between superconductivity and chiral CDW in ad-
dition to giant AHE and pair density wave state.[12,27–29,37–54]

For this latter class of materials, there are still many open is-
sues, such as the nature of superconductivity and the mecha-
nism of chiral CDW order.

Since the materials’ realizations are scarce, it is indis-
pensable to find more metallic kagome lattice compounds. To
this end, we focus our attention on a simple binary compound
V3Sb2, which is isostructural to Fe3Sn2 and contains bilayer
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kagome lattice of V ions.[31] This material has been known
to exist at temperatures below 875±25 ◦C in the V–Sb phase
diagram,[55] but its physical properties have not been studied
in detail to the best of our knowledge. In this work, we suc-
cessfully synthesized nearly pure V3Sb2 polycrystalline sam-
ple and then characterized its structure, electrical transport,
magnetic, and thermodynamics properties at ambient or high
pressures. Our results reveal a density-wave-like transition at
Tdw ≈ 160 K, which is evidenced by a clear anomaly in both
magnetic susceptibility and resistivity. This compound shows
no long-range magnetic order and superconductivity down to
1.5 K even after the density-wave-like transition being sup-
pressed completely by hydrostatic pressure. Since our density-
functional-theory (DFT) calculations show that V3Sb2 has a
non-trivial topological crystalline property, the present study
indicates that it may serve as a new metallic kagome system
to study the interplay between density-wave-order, nontrivial
band topology and possible superconductivity.

2. Experimental and calculation details
Polycrystalline samples of V3Sb2 were synthesized by

the traditional solid-state-reaction method. The powders of
V (99.99%) and Sb (99.99%) in the molar ratio 3 : 2 were
thoroughly mixed and pressed into a pellet, which was then
placed into a quartz tube and sealed under high vacuum
(∼ 5 × 10−4 Pa). The sealed ampoule was slowly heated
to 700 ◦C and held for 48 hours, and then sintered again
at 750–850 ◦C for 48 hours several times with intermediate
grinding and pelletizing. According to the V–Sb phase dia-
gram, the LT-phase of V3Sb2 with the Fe3Sn2-type structure
is stable below the peritectoid temperature of 875 ± 25 ◦C,
above which the V-deficient V2−xSb phase is more stable.[55]

Thus, we have kept the highest sintering temperatures below
850 ◦C in order to obtain the LT-V3Sb2 with the Fe3Sn2-type
structure in the present study. Phase purity of the obtained
V3Sb2 polycrystalline samples was examined by powder x-ray
diffraction (XRD) at room temperature with a Cu Kα1 radia-
tion. In order to extract the structural parameters, the refine-
ments of the crystal structure were performed by the Rietveld
method, using the FULLPROF program. Low-temperature
XRD data in the temperature range 25–300 K were collected
using an Oxford Phenix cryostat and a PANalytical X’Pert
Pro MPD diffractometer (Cu Kα1 radiation). The powder was
mounted on an aluminum sample holder using Apiezon N-
grease. Highscore Plus was used for Rietveld analysis of the
XRD patterns from V3Sb2.[56]

The magnetic properties were measured with a Quantum
Design magnetic property measurement system (MPMS-III).
Heat capacity and electrical transport measurements were car-
ried out by using a Quantum Design physical property mea-
surement system (PPMS, 14 T). High-pressure resistivity was
measured by using a self-clamped piston-cylinder cell under

various hydrostatic pressures up to 1.81 GPa.[57] Daphne 7373
was used as the pressure transmitting medium and the pressure
values were determined from the relative shift of the supercon-
ducting transition temperature of Pb.

Our DFT calculations employ the Vienna ab ini-
tio simulation package (VASP) code[58] with the projec-
tor augmented wave (PAW) method.[59] The Perdew–Burke–
Ernzerhof (PBE)[60] exchange–correlation functional is used
in our calculations. The kinetic energy cutoff is set to be
600 eV for expanding the wave functions into a plane-wave
basis in VASP calculations while the energy convergence cri-
terion is 10−6 eV. The Γ -centered k-mesh is 8× 8× 8. The
spin–orbital coupling is included in our DFT calculations. The
calculation of topological indices employs vasp2trace program
on Bilbao Crystallographic Server.[61–63]

3. Results and discussion
We have attempted to prepare pure V3Sb2 samples by

varying the final sintering temperatures between 750 ◦C and
850 ◦C. After tries and errors, we eventually obtained two
V3Sb2 polycrystalline samples with relatively high purity as
examined by XRD. Hereafter, these two samples sintered at
780 ◦C and 830 ◦C are labeled as S1 and S2, respectively.
Since their physical properties show some different behaviors,
in the following we present the experimental results of both
samples comparatively so as to underline the fact that the phys-
ical properties of V3Sb2 are sensitive to the preparation condi-
tions.

Figure 1 shows the XRD pattern of these two V3Sb2 sam-
ples after Rietveld refinement. It confirms that the obtained
samples are nearly single phase with a small amount of im-
purity, which can be identified as V3Sb for S1. The impurity
phase is too weak to be identified for S2. The main phase of
the XRD pattern can be refined by considering the hexago-
nal Fe3Sn2-type structure model (space group R-3m, No. 166)
with one V position at the 18h (x, y, z) and two Sb posi-
tions at 6c (0, 0, z), respectively. As illustrated in Fig. 1, the
refinements converge well with reliable factors Rp = 2.66%,
Rexp = 2.48%, and χ2 = 2.28 for S1, and Rp = 2.98%, Rexp =

2.26%, and χ2 = 3.78 for S2. According to the scaling fac-
tors, the amount of V3Sb impurity in S1 was estimated to be
∼ 1.2 wt%, which is consistent with the observed weak main
peak of V3Sb as shown by asterisk in Fig. 1(a). The obtained
structural parameters for both samples are listed in Table 1 for
comparison. As can be seen, the sample S1 has a shorter a but
a longer c, leading to a slightly smaller V in comparison with
those of sample S2. However, the differences are quite small,
with the relative difference being smaller than 0.3%. These
lattice parameters are also consistent with those reported in
literature for LT-V3Sb2.[55] In contrary, the positions of the
atoms, especially along the z-axis, show a relatively large dif-
ference. Taking the V site as an example, the difference of the
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z-axis position is about 2.5% for these two samples, which re-
sults in a difference in the bond length along the c-axis as dis-
cussed below. It should be noted that slight variation of V/Sb
ratio in samples prepared at different conditions is possible
and should be responsible for the observations of the sample-
dependent structural and physical properties shown below. In
addition, synchrotron-based XRD is desirable to have more
accurate determination of the structural details.
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Fig. 1. Observed (cross), calculated (solid line), and difference (bottom
line) XRD profiles of the polycrystalline V3Sb2 samples: (a) S1 and
(b) S2 after Rietveld refinements. Bragg positions of the main phase
V3Sb2 and the impurity phase V3Sb are indicated by the two rows of
tick marks in (a), while only the position of V3Sb2 is shown in (b). The
main peak of the V3Sb impurity phase is marked by an asterisk in (a).
The obtained lattice parameters for both samples are also given in the
figure.

Table 1. Lattice parameters, atomic coordinates, and isotropic thermal
factors Biso for V3Sb2 samples from powder XRD data at 295 K.

S1 (780 ◦C) S2 (830 ◦C)
Space group, Z R-3m, Z = 6

a (Å) 5.5440(1) 5.5545(1)
c (Å) 20.3529(4) 20.3374(6)

V (Å3) 541.76 (2) 543.40 (2)
Vx 0.49470(15) 0.49480(25)
Vy 0.50530(11) 0.50520(25)
Vz 0.11018(11) 0.10734(15)

Biso V (Å2) 2.65(5) 2.32(3)
Sb1 z 0.33189(4) 0.33281(5)

Biso Sb1 (Å2) 2.72(3) 2.41(3)
Sb2 z 0.11101(06) 0.10908(08)

Biso Sb2 (Å2) 3.49(4) 2.76(5)
Rp (%) 2.66 2.98

Rexp (%) 2.48 2.26
χ2 2.28 3.78

RBragg (%) 4.35 4.20

The crystal structure of V3Sb2 is schematically shown in
Fig. 2 by taking the refined structural information of S1. As
seen in Fig. 2(a), the crystal structure of V3Sb2 is composed
of Sb1 single layer and V–Sb2 bilayer that are stacked alter-
natively along the c-axis. The Sb1 atoms in the single layer
form a 2D graphene-like honeycomb lattice, Fig. 2(b), while
the V–Sb2 bilayer consists of two V kagome layers with Sb2
atoms embedded in the center of the V hexagons, Fig. 2(c).
For each V kagome layer, there are two kinds of equilateral
triangles with different V–V bond lengths, i.e., 2.8600(19) Å
and 2.6839(19) Å for S1 [2.864(4) Å and 2.691(4) Å for S2],
as shown in purple and blue in Fig. 2(d). This means that
the kagome lattice is not ideal, different from that in AV3Sb5.

b

a

c

(a) (b) (c)

(d) (e)

V

Sb2

Sb1

Sb1 honeycomb layer V-Sb2 bilayer

V octahedraV-Sb2 kagome lattice

2.68 Å

2.86 Å

Sb-Sb 3.20 Å

Fig. 2. (a) A schematic view of the layered structure of V3Sb2 (side view) stacked by Sb1 and V–Sb2 layers along the c-axis. The unit cell is enclosed
by the dashed lines. (b) The Sb1 atoms form a honeycomb sublattice below and above each V–Sb2 bilayer with Sb1–Sb1 bond length of 3.20 Å. (c)
The structure of the V–Sb2 layer. The V atoms form bilayer kagome lattice and the Sb2 atoms sit in the centers of the V hexagons in each V kagome
layer. (d) Single V–Sb2 kagome layer made of two kinds of equilateral triangles with the side lengths of 2.8602 Å and 2.6839 Å, shown in purple and
blue, respectively. (e) The V triangles with smaller length (blue) in two layers form the V6 octahedra. The bond-length values are taken from the refined
results of the S1 sample.
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As shown in Fig. 2(e), the V atoms of the smaller V triangles in
two adjacent layers can be viewed to form a V6 octahedra with
an interlayer V–V distance of 2.773(4) Å for S1 [2.870(6) Å
for S2]. For S1, this value is equal to the average of two in-
tralayer nearest-neighbor V–V bond lengths. Such a small in-
terlayer distance should produce a relatively strong interlayer
interaction. However, the interlayer V–V bond length for S2
is found to be ∼ 3% longer than the average in the ab plane,
which might result in weaker interlayer interactions.

Figures 3(a) and 3(b) show the temperature-dependent
magnetic susceptibility χ(T ) of these two V3Sb2 samples
measured in the temperature range 1.8–300 K under an exter-
nal magnetic field of µH = 1 T. The experimental procedure
is following: we first cooled the sample under zero field from
room temperature to the lowest temperature, then applied 1 T
field and recorded χ(T ) upon heating up to room tempera-
ture, followed by measuring χ(T ) upon cooling down to the
lowest temperature under 1 T. They are thus denoted as the
ZFCw- and FCc-χ(T ), respectively. As seen in Fig. 3(a), the
ZFCw- and FCc-χ(T ) curves of S1 exhibit a step-like anomaly
around 160 K, below which the magnetic susceptibility is re-
duced. In addition, an obvious thermal hysteresis is evidenced
around the transition, implying a first-order nature of this tran-
sition. The transition temperatures, T χ

dw, defined as the maxi-
mum of dχ/dT , are ∼ 159 K and ∼ 165 K for S1 in the cool-
ing and heating processes, respectively, as shown in the top
of Fig. 3(a). The χ(T ) curves of S2 are basically similar to
those of S1, but the transition is much wide and the thermal
hysteresis becomes very weak, Fig. 3(b). In addition, the tran-
sition temperatures, T χ

dw ≈ 154 K and 158 K for the cooling
and heating processes, are lower than those of S1. These com-
parisons indicate that the quality of S1 is better than that of
S2. We note that the observed feature in the magnetic suscep-
tibility is very similar to those seen in some typical CDW ma-
terials, such as 1T-TaS2,[64] NbSe3,[65] CuIr2Te4,[66] IrTe2,[67]

and AV3Sb5.[12,37,39]

Except for the transition region, the ZFCw- and FCc-
χ(T ) curves are almost overlapped with each other in the
whole temperature range, and show a paramagnetic behav-
ior at high temperature and a low-temperature upturn with-
out long-range magnetic order down to 1.8 K. As shown in
Fig. 3(a), the susceptibility χ of S1 in the low-temperature
range 2–10 K can be fitted by a modified Curie–Weiss (CW)
model, χ(T ) = χ0 +C/(T − θCW). Here, the obtained ef-
fective moment of µeff = 0.52 µB/V and a CW temperature
of θCW = −34.3 K are similar to 0.22 µB/V and −47.2 K
in KV3Sb5.[37] Noted that the presence of impurities and/or
defects should dominate the low-temperature upturn in χ(T ),
especially considering the polycrystalline nature of the stud-
ied sample. The χ−1(T ) in the high-temperature range 200–
300 K, Fig. 3(c), seems to follow a linear behavior, and a CW
fitting yields µeff = 3.07 µB/V and θCW = −4820 K. Such a

large θCW is not physically meaningful and is consistent with
a Pauli paramagnetism.

1.5

1.4

1.3

1.2

1.1

1.0

0.9

χ
-

1
 (

1
0

3
 m

o
lS
e
m

u
-

1
)

χ
 (

1
0

-
3
 e

m
u
Sm

o
l-

1
)

χ
 (

1
0

-
3
 e

m
u
Sm

o
l-

1
)

300250200150100500

T (K)

 ZFCw
 CW fit

(c) S1

1.6

1.4

1.2

1.0

0.8

0.6
300250200150100500

T (K)

d
χ
/
d
T
 (

a
rb

. 
u
n
it
s)

d
χ
/
d
T
 (

a
rb

. 
u
n
it
s)

(b) S2

1.0

0.9

0.8

0.7

300250200150100500

 ZFCw

 FCc

 CW fit

(a) S1

-4

-2

0

2

4

M
 (

1
0

-
3
 µ

B
/
V

)

-8 -4 0 4 8

1.8 K
10 K
30 K
100 K
300 K

(d) S1

Tdw
χ

Tdw
χ

µ0Η (T)

Fig. 3. Temperature dependence of the dc magnetic susceptibility χ(T )
and its derivative dχ/dT for V3Sb2 samples: (a) S1 and (b) S2, measured
in the ZFCw and FCc modes under an external magnetic field of 1 T. The
transition temperature T χ

dw was defined as the peak of the dχ/dT . (c) Tem-
perature dependence of the inverse susceptibility χ−1(T ) for sample S1.
The CW fitting curves are shown by the solid lines in (a) and (c). (d) The
isothermal magnetization M(H) curves for sample S1 measured between
+7 T and −7 T at various temperatures.

Figure 3(d) presents the field dependence of magnetiza-
tion M(H) for S1 between −7 T and +7 T at various temper-
atures. The M(H) curves at all temperatures except for 1.8 K
exhibit a linear dependence on the external field with no hys-
teresis, confirming the absence of ferromagnetic contributions
to the magnetism. The magnetic moment of ∼ 0.003 µB/V
at 7 T is small. These results make it significantly different
from Fe3Sn2, but similar with the AV3Sb5 family where no
magnetic order or even local moment of V ion was found.
In the isostructural compound Fe3Sn2, the Fe atoms in the
kagome plane exhibit strong frustrated magnetic interactions,
undergoing complex magnetic phase transitions upon cooling
down from a paramagnetic to a collinear ferromagnetic state
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at 640 K, then to a non-collinear ferromagnetic state at 350 K,
and finally to a re-entrant spin glass phase at 70 K.[68] In addi-
tion, we find that the magnitudes of χ(T ) and M(H) for V3Sb2

are very close to those of KV3Sb5,[37] further indicating the
similarity of magnetic states in these two V-based kagome sys-
tems.

The presence of a density-wave-like transition in V3Sb2 is
further confirmed by the resistivity measurement. Figure 4(a)
shows the temperature-dependent ρ(T ) of S1 measured in a
thermal cycle under 0 T. As can be seen, it displays a metal-
lic behavior in the whole temperature range and exhibits a
clear hump-like anomaly around T ρ

dw ≈ 157 K and 165 K in
the cooling and heating processes. These transition temper-
atures defined from the dip of the dρ/dT curve are in good
agreement with those determined from the χ(T ) data shown
in Fig. 3(a). In addition, a similar thermal hysteresis is evi-
denced around T ρ

dw in ρ(T ). We find that the application of
10 T external magnetic field has a negligible influence on the
ρ(T ) near T ρ

dw (data not shown). This result indicates that the
transition is most likely due to the formation of CDW rather
than SDW. A small positive magnetoresistance (MR) was ev-
idenced at low temperatures. The inset of Fig. 4(a) displays
the MR ≡ ∆ρ(H)/ρ(0)×100% at 2 K in the field range from
−14 T to 14 T. As can be seen, the MR is only ∼ 1.2% at 2 K
and 14 T, but it is non-saturating and can be well described by
the expression MR ∝ Hn with n = 1.35.
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up to 14 T.

Interestingly, the ρ(T ) of S2 is quite different with re-
spect to that of S1 as seen in Fig. 4(b). Nonetheless, it also
exhibits a pronounced anomaly centered around 150–160 K,
and the transition temperatures determined from the minimum
of dρ/dT are 152 K and 160 K in the cooling and heating
processes, respectively. These temperatures are also consistent
with those determined from the χ(T ) data shown in Fig. 3(b).
In comparison with S1, the transition is much stronger and ex-
tended over a wider temperature range. In addition, the resis-
tivity below Tdw becomes higher than that above the transition
and displays a clear upturn at low temperatures. These com-
parisons highlight a better quality of sample S1 than that of S2,
and the observed differences might be attributed to the fact that
the final sintering temperature of 830 ◦C for S2 is closer to the
peritectoid temperature.[55] In the following we thus focus our
attention on sample S1. Despite of these differences, the oc-
currence of density-wave-like transition, most likely a CDW
one, around Tdw ≈ 160 K in V3Sb2 should be an intrinsic and
bulk behavior.

We have performed variable-temperature powder XRD
on S1 from room temperature down to 25 K in order to check
if the CDW order is accompanied by obvious structural transi-
tion. Within the resolution of our instrument, no obvious peak
splitting or satellite peaks are observed in the XRD patterns
over the whole temperature range, as illustrated in Fig. 5(a) for
a portion of the XRD patterns measured at 25 K and 300 K.
This indicates that the structural modification, if exists around
Tdw, should be too weak to be detected by our lab XRD, and
may await for verification with high-resolution synchrotron
XRD or transmission electron microscope at low tempera-
tures. Interestingly, we find that the lattice parameter c(T )
exhibits a negative thermal expansion over the whole temper-
ature range, while both a(T ) and V (T ) display normal con-
traction upon cooling down as shown in Fig. 5(b). The smooth
evolution of the lattice parameters across Tdw is also consistent
with the absence of structural transition in V3Sb2.

To further characterize the paramagnetic and metallic
ground state of V3Sb2 with a possible CDW-like transition,
we performed specific-heat measurements on S1 in the wide
temperature range. Figure 6 displays the C/T vs. T of S1
from 2 K to 250 K under zero field. There is no obvious
specific-heat anomaly near the CDW-like transition, suggest-
ing that the thermodynamic signature of this transition is too
weak to be observed. We attributed the absence of specific-
heat anomaly around Tdw in V3Sb2 to the polycrystalline na-
ture of the studied sample. In comparison with the single crys-
tal, the relatively poor crystallization and the presence of grain
boundaries in the polycrystalline samples would diminish con-
siderably the specific-heat anomaly around a phase transition.
This is well demonstrated in AV3Sb5:[12,37–39] the specific-
heat anomaly around the first-order transition can be barely
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observed in the polycrystalline KV3Sb5,[37] while it becomes
clearer in the single-crystal KV3Sb5

[38] and is much stronger
in the CsV3Sb5 crystal[12] with a better quality than KV3Sb5.
We also noticed that the density-wave-like transition in resis-
tivity and susceptibility of our polycrystalline V3Sb2 sample
is relatively broad, which can further obscure the thermody-
namic signature. The inset of Fig. 6 shows the plot of C/T
vs. T 2 at the low-temperature range, and a linear fit to C/T =

γ + βT 2 considering the electronic and lattice contributions
yields the Sommerfeld coefficient γ = 18.5(1) mJ·mol−1·K−2

and β = 0.73(1) mJ·mol−1·K−4. The Debye temperature
ΘD ≈ 237 K can be calculated according to the relation ΘD =

(12π4nR/5β )1/3, where R = 8.314 J·mol−1·K−1 is the ideal
gas constant and n = 5 is the number of atoms per formula
unit. The obtained γ is relatively large compared with ele-
mental metal and is close to that of KV3Sb5,[37] implying the
moderate enhancement of the effective electron mass and the
presence of electronic correlations.
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From the above characterizations, we can conclude that
the bilayer kagome metal V3Sb2 is a paramagnetic metal and
undergoes a CDW-like transition at Tdw ≈ 160 K, which is
similar to the family of AV3Sb5. But no superconductivity
was observed in V3Sb2 at ambient pressure down to 1.8 K.
To explore whether superconductivity emerges after suppress-
ing the CDW under pressure, we measured the ρ(T ) of S1
under various hydrostatic pressures up to 1.8 GPa by using a

piston-cylinder cell. The ρ(T ) and its derivative dρ/dT at
different pressures are shown in Fig. 7(a). The evolution of
the CDW-like transition with pressure can be tracked clearly
from the resistivity anomaly. With increasing pressure grad-
ually, the anomaly in ρ(T ) and the corresponding Tdw deter-
mined from the minimum of dρ/dT continuously move to
lower temperatures. The pressure dependence of the deter-
mined Tdw is plotted in Fig. 7(b). As can be seen, Tdw is
suppressed to about 60 K at 1.6 GPa, above which it cannot
be clearly distinguished in both ρ(T ) and dρ/dT , implying
a complete suppression of CDW-like order above 1.6 GPa.
However, no sign of superconductivity can be observed down
to 1.5 K accompanying the complete suppression of CDW-
like order. Whether superconductivity can be realized at much
lower temperatures or on high-quality single-crystal samples
deserves further studies. Although the above characterizations
have revealed a first-order character for the CDW-like transi-
tion at ambient pressure, the resistivity anomaly around Tdw

is weakened gradually by applying pressure, Fig. 7(a). If a
crossover from first-order to second-order transition can take
place, a putative quantum critical point can be realized un-
der pressure. When the high-quality V3Sb2 single crystals be-
come available, further high-pressure studies are desirable for
in-depth investigations on the pressure-induced quantum criti-
cal phase transition.
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Fig. 6. The C/T vs. T for V3Sb2 sample S1 in the wide temperature
range from 2 K to 250 K under zero field. Inset shows the C/T vs.
T 2 at the low-temperature range, which can be described by a sum of
electronic and phonon contributions.

Finally, we calculated the electronic structure of V3Sb2

by first-principles calculations. As shown in Fig. 8, the V3Sb2

shows a metallic nature and its Fermi surface is mainly com-
posed by V’s d orbitals. In V3Sb2, there are two kinds of
antimony, which are chemically inequivalent, forming dif-
ferent bands. The hybridization between Sb2 and V is rel-
atively stronger than that between Sb1 and V, because Sb2
are intralayer with V atoms. Meanwhile, we calculated the
topological indices of V3Sb2, which are z2w,1 = 0, z2w,2 = 0,
z2w,3 = 0 and z4 = 2, showing a non-trivial topological crys-
talline property.[61–63]
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The present work is a preliminary study on the physi-
cal properties of V3Sb2 polycrystalline samples and leaves
many open questions for the future experimental and theo-
retical studies. For example, electrical transport and mag-
netic properties at much lower temperatures should be mea-
sured to explore possible superconductivity or magnetic order.
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Low-temperature synchrotron XRD, transmission electron mi-
croscope, optical spectroscopy, and scanning tunneling micro-
scope measurements should be performed to elucidate the na-
ture of the density-wave-like transition. Moreover, to acquire
high-quality single crystal samples is mandatory for in-depth
characterizations of the intrinsic electronic structure by using
the angle-resolved photoemission spectroscopy.

4. Conclusion
In summary, we have synthesized the polycrystalline

sample of V3Sb2 with bilayer kagome lattice of V atoms
through a traditional solid state reaction method and charac-
terized its structural, electrical transport, magnetic, and ther-
modynamic properties via x-ray powder diffraction, resistiv-
ity, magnetic susceptibility, and specific heat measurements.
We observed no long-range magnetic order in V3Sb2 above
1.8 K, which is completely different from the isostructural
Fe3Sn2 but similar to the kagome metal AV3Sb5 (A = K, Rb,
Cs) family. In addition, a density-wave-like anomaly was ev-
idenced around 160 K in V3Sb2, making it more similar to
the AV3Sb5 (A = K, Rb, Cs) family. Moreover, we found that
the density-wave-like transition can be gradually suppressed
by pressure but no sign of superconductivity can be observed
down to 1.5 K. We proposed that V3Sb2 is a novel candidate
kagome metal to study the interplay between density-wave-
order, nontrivial band topology and possible superconductiv-
ity.

Note added
During the preparation of this manuscript, we noticed

that Shi et al. reported the synthesis and characterizations
of the “V6Sb4” single crystal in a recent preprint arXiv:
2110.09782.[69] The V6Sb4 single crystal was grown at a high
temperature of 1100 ◦C and does not exhibit any density-
wave-like transition, different from what we observed in the
low-temperature phase of V3Sb2 in the present work. We at-
tributed the observed different behaviors to the different sin-
tering temperatures.
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